对多元二次函数的理解

对多元二次函数的理解

         本学期学习了《工程优化》的课程,平时没有好好地上课听讲,快考试了才发现这门课程还是挺有用的。老师上课讲的优化问题都是针对多元二次函数的,而且大部分是二元二次,比较简单。之前自己并没有对多元二次函数有过多认识,学东西也是浑沦吞枣,这两天细细地看书,感觉多元二次函数的图像特别有意思。
         这里,我们以二元二次函数为例,利用MATLAB对其进行可视化。
         一、先以一个二次型为例:
         函数形式为

       

 例如函数:

         Z=X1.^2+X2.^2,

X1,X2取值范围为[-6,6],

 其图形为:

       因为上述二次型的Q为正定对称矩阵,所以这明显是一个凸函数,且最优值唯一。
      观察上图可知,它的等高线都是以(0,0)为圆心的圆族,圆心处就是最优解。
      对上式进行稍加改变:

      Z=X1.^2+X2.^2+1*X1.*X2,X1,X2取值范围为[-6,6],图形变化为:


      此时,函数同样是一个凸函数,因为Q同样是正定矩阵,此时,


      但是它的等高线已不是圆,而是一个椭圆族。

      而此时如果把函数改为:

      Z=X1.^2+X2.^2+2*X1.*X2,X1,X2取值范围为[-6,6],图形变化为:



      此时,函数已经不再是凸函数,因为Q已经不再是正定矩阵。此时,


      而且,此时的等高线很有意思,已经不是一些闭合曲线,说明,此时没有极值点。

      函数为Z=X1.^2+X2.^2+8*X1.*X2时,图形为:


      下面,看一下标准形式的二次函数图像,其函数形式为:


      例如:函数为Z=2*X1.^2+2*X2.^2+2*X1.*X2+30*X1, X1,X2取值范围为[-6,6],其图像为:

      从图像看,好像此时的函数已经不是凸函数,等高线也不是闭合曲线,其实这样下结论是错的。此时的Q为

      不难判断Q正定,所以函数应该是严格凸函数。实际上,完整的图像应该如下所示,上图是受限于X的取值范围所致。


      此时的取值范围为[-60,60]。所以二次函数的凹凸性与b,c无关,至于矩阵Q有关。
     上面的工作只是简单地对二次函数进行了可视化,没有什么技术可言,还望看客不要取笑。下面提供画一些高数中的函数图像的程序和这些函数的图像。

一、螺旋线

1.静态螺旋

a=0:0.1:20*pi;
h=plot3(a.*cos(a),a.*sin(a),2.*a,'b','linewidth',2);
axis([-50,50,-50,50,0,150]);
grid on
set(h,'erasemode','none','markersize',22);
xlabel('x轴');ylabel('y轴');zlabel('z轴');
title('静态螺旋线');

<
  • 5
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值