RSA算法介绍

转载 2006年05月19日 17:05:00

RSA算法介绍 

它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。

一、RSA算法 :

首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数......
p, q, r 这三个数便是 private key

接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1).....
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了.....
再来, 计算 n = pq.......
m, n 这两个数便是 public key

编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n....
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小於 n, 然後分段编码......
接下来, 计算 b == a^m mod n, (0 <= b < n),
b 就是编码後的资料......

解码的过程是, 计算 c == b^r mod pq (0 <= c < pq),
於是乎, 解码完毕...... 等会会证明 c 和 a 其实是相等的 :)

如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b......
他如果要解码的话, 必须想办法得到 r......
所以, 他必须先对 n 作质因数分解.........
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难.........


<定理>
若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq

证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的........

<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 modulo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
则 a^(q-1) == 1 mod q (费马小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq

3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上

4. 如果 a 同时是 p 和 q 的倍数时,
则 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.


这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)....
但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,
所以这就是说 a 等於 c, 所以这个过程确实能做到编码解码的功能.....

二、RSA 的安全性

RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作

大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA 的一些变种算法已被

证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数

n 必须选大一些,因具体适用情况而定。

三、RSA的速度

由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般

来说只用于少量数据加密。

四、RSA的选择密文攻击

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计

算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构

( XM )^d = X^d *M^d mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一

问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己

一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction 对文档作

HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。

五、RSA的公共模数攻击

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密

,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n

,则:

C1 = P^e1 mod n

C2 = P^e2 mod n

密码分析者知道n、e1、e2、C1和C2,就能得到P。

因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

r * e1 + s * e2 = 1

假设r为负数,需再用Euclidean算法计算C1^(-1),则

( C1^(-1) )^(-r) * C2^s = P mod n

另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一

是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。

RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到

现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖

于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握

它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到

素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算

代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于

数据格式的标准化。目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比

特的密钥。
 

RSA算法使用介绍

原文地址: http://www.devdiv.com/rsa_-blog-20-11254.html    RSA是目前最有影响力的公钥加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十...
  • dragonpeng2008
  • dragonpeng2008
  • 2016年08月19日 08:48
  • 420

轻松学习RSA加密算法原理

http://blog.csdn.net/q376420785/article/details/8557266 http://www.ruanyifeng.com/blog/2013/07/rsa_...
  • sunmenggmail
  • sunmenggmail
  • 2013年09月24日 23:54
  • 90459

RSA加密算法简介

如果你问我,哪一种算法最重要?我可能会回答"公钥加密算法"。 因为它是计算机通信安全的基石,保证了加密数据不会被破解。你可以想象一下,信用卡交易被破解的后果。 进入正题之前,我先简...
  • cws1214
  • cws1214
  • 2013年12月06日 14:05
  • 3724

RSA加密算法原理及RES签名算法简介

来源:http://www.xuebuyuan.com/1399981.html 第一部分:RSA算法原理与加密解密 一、RSA加密过程简述 A和B进行加密通信时,B...
  • lisheng19870305
  • lisheng19870305
  • 2014年11月28日 15:00
  • 5475

密码学:用例子和程序说明RSA算法过程

本文用简单的例子说明RSA算法过程。
  • ddk3001
  • ddk3001
  • 2017年01月17日 19:35
  • 1962

带你彻底理解RSA算法原理

1. 什么是RSARSA算法是现今使用最广泛的公钥密码算法,也是号称地球上最安全的加密算法。在了解RSA算法之前,先熟悉下几个术语 根据密钥的使用方法,可以将密码分为对称密码和公钥密码 对称密码:...
  • dbs1215
  • dbs1215
  • 2015年10月09日 21:08
  • 20340

目前世界上最重要的算法RSA的数学原理摘要

RSA 算法 原理 实际应用
  • lonelyrains
  • lonelyrains
  • 2014年04月03日 11:43
  • 2647

RSA算法类(PHP)

通过openssl实现的签名、验签、非对称加解密,需要配合x.509证书(如crt和pem)文件使用。 由于各种原因,该类并不十分完善,欢迎各种测试! ...
  • linvo
  • linvo
  • 2013年01月25日 17:55
  • 13729

RSA算法之实现篇

本文的目的在于了解、熟悉RSA加密的算法流程并实现一个可用的RSA加密程序。 RSA中的密钥长度指的是公钥的长度,目前主流的公钥长度为1024、2048以及4096位。由于已经有768位公钥被成功分解...
  • qmickecs
  • qmickecs
  • 2014年09月29日 21:26
  • 6310

RSA算法Java的简单实现

RSA简介 RSA算法据说是目前地球上最重要的加密算法。维基百科是这么介绍的:“对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人...
  • he_qiao_2010
  • he_qiao_2010
  • 2015年03月30日 22:07
  • 4782
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:RSA算法介绍
举报原因:
原因补充:

(最多只允许输入30个字)