关闭

机器学习 scikit-learn(1)

178人阅读 评论(0) 收藏 举报
分类:

1. 通过样本来预测未知的数据;通过学习数据集的特征(训练集 training set)来应用到新的数据上。

2. 监督学习:

分类:样本属于多于两个类,我们想要从已经标记过的数据来预测未标记数据的类---digits

回归:如果想要的输出包括多余一个连续的变量
    无监督:

训练集包括一系列的矢量X而没有相对应的y(目标值)。

3. 学习和预测

在数字集中,任务是预测给出图片。

分类的估计量------fit(X,y) & predict(T)

估计量的一个例子是一个类sklearn-svm-SVC

>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

我们把估计量例子clf当作分类器。它必须适应模型,换句话说就是学习模型。所以我们要传递数据集去给是适应模型。作为训练集,我们使用除了最后一个所有数据集的图片。

>>> clf.fit(digits.data[:-1], digits.target[:-1])  
SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma=0.001, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)

之后我们可以询问数据集最后一个是什么

>>> clf.predict(digits.data[-1:])
array([8])

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4801次
    • 积分:182
    • 等级:
    • 排名:千里之外
    • 原创:13篇
    • 转载:8篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档