机器学习 scikit-learn(2)

原创 2016年08月31日 15:53:55

标签传播(label Propagation)

强调一种主动学习工具去学习手写数字。开始训练一个只有10个标签的标签传播模型,然后我们选择5个最不确定的去标记。之后我们训练15个标签点。重复4次,最后得到一个拥有30个标签的例子。例子来自于scikit-learn官网

print(__doc__)

# Authors: Clay Woolam <clay@woolam.org>
# Licence: BSD

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import label_propagation
from sklearn.metrics import classification_report, confusion_matrix

digits = datasets.load_digits() #导入数据集
rng = np.random.RandomState(0)  
indices = np.arange(len(digits.data)) #indices是索引号为0-1788的数组
rng.shuffle(indices)  #随机

X = digits.data[indices[:330]]    #取索引号为前330的数据
y = digits.target[indices[:330]]  #取索引号为前330的目标数据
images = digits.images[indices[:330]]

n_total_samples = len(y)          #共330个
n_labeled_points = 10

unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]	#没有标记后320个索引
f = plt.figure()

for i in range(5):	#循环5次
    y_train = np.copy(y)		#索引号为前330个的目标数据
    y_train[unlabeled_indices] = -1	#后面320个都是-1

    lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5)	#自定义标签传播模型
    lp_model.fit(X, y_train)		# 应用,进行训练

    predicted_labels = lp_model.transduction_[unlabeled_indices]	#进行传播,之后得到预测的值
    true_labels = y[unlabeled_indices]	#真实值

    cm = confusion_matrix(true_labels, predicted_labels,
                          labels=lp_model.classes_)

    print('Iteration %i %s' % (i, 70 * '_'))
    print("Label Spreading model: %d labeled & %d unlabeled (%d total)"
          % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples))

    print(classification_report(true_labels, predicted_labels))

    print("Confusion matrix")
    print(cm)

    # compute the entropies of transduced label distributions
    pred_entropies = stats.distributions.entropy(
        lp_model.label_distributions_.T)

    # select five digit examples that the classifier is most uncertain about
    uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:]

    # keep track of indices that we get labels for
    delete_indices = np.array([])

    f.text(.05, (1 - (i + 1) * .183),
           "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10)
    for index, image_index in enumerate(uncertainty_index):
        image = images[image_index]

        sub = f.add_subplot(5, 5, index + 1 + (5 * i))
        sub.imshow(image, cmap=plt.cm.gray_r)
        sub.set_title('predict: %i\ntrue: %i' % (
            lp_model.transduction_[image_index], y[image_index]), size=10)
        sub.axis('off')

        # labeling 5 points, remote from labeled set
        delete_index, = np.where(unlabeled_indices == image_index)
        delete_indices = np.concatenate((delete_indices, delete_index))

    unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
    n_labeled_points += 5

f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
           "uncertain labels to learn with the next model.")
plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45)
plt.show()


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Python下的机器学习工具scikit-learn(学习笔记2--官方实例程序)

本文参考官方网站:http://scikit-learn.org/stable/tutorial/basic/tutorial.html scikit-learn工具包自带一些标准数据集(包括iris...

机器学习之pip安装scikit-learn问题解决

scikit-learn包的安装参考了网上及论坛的资料,大致方法相同,但实际中还是遇到了些网上没有的问题,贴出来与大家分享下。进入正题,电脑配置win64位,python27,步骤如下: pytho...

scikit-learn使用OneHotEncoder处理Nominal属性的机器学习流程(Random Forest算法为例)

scikit-learn机器学习流程(处理类别属性)

机器学习各类工具weka、scikit-learn等各项指标的对比

以下表格摘自:http://www.shogun-toolbox.org/ 另推荐机器学习软件汇总网站 http://mloss.org/software/ fea...

机器学习(1)scikit-learn的介绍

章节内容 在本节中,我们介绍我们在scikit-learn中使用的机器学习词汇,并给出一个简单的学习示例。 机器学习:问题设置 一般来说,学习问题考虑一组n个数据样本,然后尝试预测未知数据的属性。 ...

《机器学习系统设计》之应用scikit-learn做文本分类(上)

前言:     本系列是在作者学习《机器学习系统设计》([美] WilliRichert)过程中的思考与实践,全书通过Python从数据处理,到特征工程,再到模型选择,把机器学习解决问题的过程一一呈现...

机器学习之scikit-learn初识

上了一门机器学习课,实践平台老师推荐了Python和scikit-learn库。scikit-learn库包含有完善的文档和丰富的机器学习算法,在官方文档上每种算法都有讲解和应用示例(简直堪比老师课上...

介绍Python 和 Scikit-Learn 的机器学习

现在,很多人想开发高效的算法以及参加机器学习的竞赛。所以他们过来问我:”该如何开始?”。一段时间以前,我在一个俄罗斯联邦政府的下属机构中领导了媒体和社交网络大数据分析工具的开发。我仍然有一些我团队使用...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)