关闭

并查集初阶:畅通工程问题

标签: 函数class并查集
276人阅读 评论(0) 收藏 举报
分类:

畅通工程问题是一个很经典的并查集问题。不是说这一题不可以用图论来解决,而是这题用并查集的思想省时省力,何乐而不为?

并查集类的补充:Count函数
在我之前的一篇文章中,用一个类封装了并查集的基本操作。而现在我们针对在畅通工程中遇到的一个问题,我们对这个类进行一个简单的拓展,也就是增加一个简单的Count函数。这个函数用于计算集合的数量。

        int Count(int s,int e)
        {
            int sum[UFS_LIMIT]={0};
            for(int i=s;i<=e;i++)
                this->Find(i);
            for(int i=s;i<=e;i++)
                sum[father[i]]++;
            int cnt=0;
            for(int i=0;i<UFS_LIMIT;i++)
                cnt+=(sum[i]>0);
            return cnt;
        }

好吧,作为一个即将面对OIP的人,我不得不承认在OIP里面这样用类封装的方式很少有实用价值,有时还会拖慢运行速度。不过在这个面向对象的时代,多练习练习总有好处,虽然是好高鹜远。

题解
言归正传,畅通工程问题的大意是:无向图有V个顶点,M条边,求出其中再添加多少条边就可以构成联通图。
这个问题可以用图论来解决,但是用并查集的速度显然更快。建立一个由V棵单节点树根组成的森林,每读入一条边,就把这条边的两个顶点Union,然后通过上面提供的Count函数来找出有多少个集合存在,-1以后就是要建立的道路数目。
以下是我的参考代码:

#include <iostream>
#include <cstring>
#include <cmath>
#define UFS_LIMIT 10000
using namespace std;
class UnionFindSet
{
    public:
        int father[UFS_LIMIT];
        UnionFindSet()
        {
            for(int i=0;i<UFS_LIMIT;i++)
                father[i]=i;
            return;
        }
        int Find(int x)
        {
            int t=x,tt;
            while(x!=father[x])
                x=father[x];
            while(t!=x)
            {
                tt=father[t];
                father[t]=x;
                t=tt;
            }
            return father[x];
        }
        void Union(int x,int y)
        {
            x=Find(x);
            y=Find(y);
            if(x!=y) father[x]=y;
            return;
        }
        bool IfSame(int x,int y)
        {
            return Find(x)==Find(y);
        }
        int Count(int s,int e)
        {
            int sum[UFS_LIMIT]={0};
            for(int i=s;i<=e;i++)
                this->Find(i);
            for(int i=s;i<=e;i++)
                sum[father[i]]++;
            int cnt=0;
            for(int i=0;i<UFS_LIMIT;i++)
                cnt+=(sum[i]>0);
            return cnt;
        }
};
int main()
{
    UnionFindSet ufs;
    int n,m,i,j,t1,t2;
    cin>>n>>m;
    for(i=0;i<m;i++)
        cin>>t1>>t2, ufs.Union(t1,t2);
    cout<<ufs.Count(1,n)-1<<endl;
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:10028次
    • 积分:525
    • 等级:
    • 排名:千里之外
    • 原创:45篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条