并查集初阶:畅通工程问题

原创 2016年08月29日 21:11:14

畅通工程问题是一个很经典的并查集问题。不是说这一题不可以用图论来解决,而是这题用并查集的思想省时省力,何乐而不为?

并查集类的补充:Count函数
在我之前的一篇文章中,用一个类封装了并查集的基本操作。而现在我们针对在畅通工程中遇到的一个问题,我们对这个类进行一个简单的拓展,也就是增加一个简单的Count函数。这个函数用于计算集合的数量。

        int Count(int s,int e)
        {
            int sum[UFS_LIMIT]={0};
            for(int i=s;i<=e;i++)
                this->Find(i);
            for(int i=s;i<=e;i++)
                sum[father[i]]++;
            int cnt=0;
            for(int i=0;i<UFS_LIMIT;i++)
                cnt+=(sum[i]>0);
            return cnt;
        }

好吧,作为一个即将面对OIP的人,我不得不承认在OIP里面这样用类封装的方式很少有实用价值,有时还会拖慢运行速度。不过在这个面向对象的时代,多练习练习总有好处,虽然是好高鹜远。

题解
言归正传,畅通工程问题的大意是:无向图有V个顶点,M条边,求出其中再添加多少条边就可以构成联通图。
这个问题可以用图论来解决,但是用并查集的速度显然更快。建立一个由V棵单节点树根组成的森林,每读入一条边,就把这条边的两个顶点Union,然后通过上面提供的Count函数来找出有多少个集合存在,-1以后就是要建立的道路数目。
以下是我的参考代码:

#include <iostream>
#include <cstring>
#include <cmath>
#define UFS_LIMIT 10000
using namespace std;
class UnionFindSet
{
    public:
        int father[UFS_LIMIT];
        UnionFindSet()
        {
            for(int i=0;i<UFS_LIMIT;i++)
                father[i]=i;
            return;
        }
        int Find(int x)
        {
            int t=x,tt;
            while(x!=father[x])
                x=father[x];
            while(t!=x)
            {
                tt=father[t];
                father[t]=x;
                t=tt;
            }
            return father[x];
        }
        void Union(int x,int y)
        {
            x=Find(x);
            y=Find(y);
            if(x!=y) father[x]=y;
            return;
        }
        bool IfSame(int x,int y)
        {
            return Find(x)==Find(y);
        }
        int Count(int s,int e)
        {
            int sum[UFS_LIMIT]={0};
            for(int i=s;i<=e;i++)
                this->Find(i);
            for(int i=s;i<=e;i++)
                sum[father[i]]++;
            int cnt=0;
            for(int i=0;i<UFS_LIMIT;i++)
                cnt+=(sum[i]>0);
            return cnt;
        }
};
int main()
{
    UnionFindSet ufs;
    int n,m,i,j,t1,t2;
    cin>>n>>m;
    for(i=0;i<m;i++)
        cin>>t1>>t2, ufs.Union(t1,t2);
    cout<<ufs.Count(1,n)-1<<endl;
    return 0;
}
版权声明:文章内容精心原创,未经许可严禁转载或用于商业用途。

相关文章推荐

最短路径问题的几种算法(dijkstra , Floyd ,) 例 hdoj 1002 畅通工程续

集训学最短路径问题目前学了两种算法,dijkstra 和 Floyd 。先说Floyd Floyd 其写法很简单,就是3层for循环,由于循环较多,因此也时间复杂度高,其核心思想就是map[i][j...

8-06. 畅通工程之局部最小花费问题(35)(最小生成树_Prim)(ZJU_PAT)

8-06. 畅通工程之局部最小花费问题(35)(最小生成树_Prim)(ZJU_PAT)

畅通工程续 最短路径问题

畅通工程续 Problem Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,...

5-50 畅通工程之局部最小花费问题 (35分)

5-50 畅通工程之局部最小花费问题   (35分) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交...

畅通工程之最低成本建设问题

Think: 看了输入样例,目测是 最小生成树 问题。。而且还是模板题。。。既然是最小生成树问题,所以我就直接用了Prim算法。。初始化什么的还是老套路,直接写就可以了。。。因为最后在判断是否存在...

【解题报告】HDU 1874 畅通工程续 -- Dijkstra算法详解 单源点最短路问题

此题Dijkstra算法,一次AC。这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上:  迪科斯彻算法分解(优酷) problem link -> HDU 1874 /...

HDU-1874畅通工程续(最短路问题)

题目: Problem Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比...

六度空间 地下迷宫探索 哈利·波特的考试 旅游规划 畅通工程之最低成本建设问题

六度空间————广搜 点击打开链接 #include #include #include #include #define N 1010 using namespace std; struct...

5-13 畅通工程之最低成本建设问题 (30分)(这个是补上去的7月5号)

5-13 畅通工程之最低成本建设问题   (30分) 某地区经过对城镇交通状况的调查,得到现有城镇间快速道路的统计数据,并提出“畅通工程”的目标:使整个地区任何两个城镇间都可以实现快速交通(但不...

畅通工程系列问题题解(HDU 1233 1863 1875 1879)

畅通工程系列问题
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:并查集初阶:畅通工程问题
举报原因:
原因补充:

(最多只允许输入30个字)