排序——快速排序

原创 2016年08月31日 11:20:24

终于有时间可以把快速排序,仔细的梳理一遍了。

快排 在实际中最常用的一种排序算法,速度快,效率高。就像名字一样,快速排序是最优秀的一种排序算法。

什么是快速排序?

快排的基本思想:快排采用的是分治(PS:分开治理)的思想。

过程是这样的:1、在一组数中找到一个基准值(key)

 2、把这一组数分为小于key的一小组数,和大于key的另一小组数(按升序排列)

把小于key的一小组数放在key的左边 ,大于key的另一小组数放在key的右边

 3、重复 1、 2步骤,直到各区间只有一个数。

下面用一组数来说明:

  1 ,  3  , 5 , 6  , 4  ,  2

  

下面我们就用代码实现,通过代码在继续理解

<span style="font-family:Microsoft YaHei;font-size:14px;">//快速排序             
int Partion(int *arr, size_t left,size_t right)//单次划分区间的左右索引
{
	assert(arr);
	if (left < right)
	{
		int key = arr[right];
		int begin = left;
		int end = right ;
		while (begin != end)
		{
			while (begin < end && arr[begin] <= key)
				begin++;
			while (begin < end && arr[end] >= key)
				end--;
			if (begin < end)
				std::swap(arr[begin], arr[end]);
		}
		//把key的位置放到中间(实现划分区间)
		std::swap(arr[begin ], arr[right]);
		return begin ;
	}
	return  -1;
}
void QuickSort(int arr[], size_t left , size_t right) //left right 是索引
{
	assert(arr );
	if (left < right)
	{
		int boundary = Partion(arr, left, right);
		QuickSort(arr, left, boundary - 1);  //boundary-1 是左区间的上限
		QuickSort(arr, boundary + 1, right); //boundary+1 是右区间的下限
	}
}</span>
下面我将主要讲述,代码的单次划分区间流程



其实,还有一种方法:挖坑法

具体是这样的:

<span style="font-size:14px;">//快排 -- 挖坑法
int Partion1(int arr[],  int left,  int right)
{
	assert(arr);
	if (left < right)
	{
		int key = arr[right];
		while (left != right)
		{
			while (left < right && arr[left] <= key)
				left++;
			if (left < right)
				arr[right--] = arr[left];//right--

			while (left < right && arr[right] >= key)
				right--;
			if (left < right)
				arr[left++] = arr[right];  // left++
		}
		//最后一个坑
		arr[right] = key;
	}
	return right;
}
void QuickSort1(int arr[], const size_t left , const size_t right)
{
	assert(arr);
	if (left < right)
	{
		int Boundary = Partion1(arr, left, right);
		QuickSort1(arr, left, Boundary - 1);
		QuickSort1(arr, Boundary + 1, right);
	}
}
</span>

这个挖坑法相比于第一种方法其实就是提前把数据搬移过去了。


用递归的方法就是使用了栈的思想, 那么我们来也自己创建议一个栈实现递归的思想。同时,就实现了递归和循环之间的转换

<span style="font-size:14px;">//快排---非递归--挖坑法
int Partltion_4(int arr[], int left, int right)
{
	assert(arr);
	if (left < right)
	{
	                 //	int mid = GetMid(arr, left, right);  后面怎么给值???
		int Key = arr[right];
		while (left != right)
		{
			while (left < right && arr[left] <= Key)
				left++;
			if (left < right)
			{
				arr[right--] = arr[left]; //填坑,right向前移动
			}
			while (left < right && arr[right] >= Key)
				right--;
			if (left < right)
			{
				arr[left++] = arr[right]; //填坑,left向后移动
			}
		}
		 arr[right] = Key;  //////////////////////////////////!!!
		 return right;
	}
	
}
void QuickSort_4(int arr[], int left, int right)
{
	assert(arr);
	stack<int> s;
	if (left < right)
	{
		int boundary = Partltion_4(arr, left, right);
		if (boundary - 1 > left )
		{
			s.push(left);
			s.push(boundary - 1);
		}
		if (boundary + 1 < right)
		{
			s.push(boundary + 1);
			s.push(right);
		}
		while (!s.empty())
		{
			int end = s.top();//结束位置
			s.pop();
			int begin = s.top();// 起始位置
			s.pop();

			int Boundary = Partltion_4(arr, begin, end); //多次划分

			if (Boundary - 1 > begin) //起始边界 由left-->begin
			{
				s.push(left);
				s.push(Boundary - 1);
			}
			if (Boundary + 1 < end)  //结束边界 right -->end
			{
				s.push(Boundary + 1);
				s.push(right);
			}
		}
	}
	
}</span>


另外,在找key值的时候,可能找的不好,从而使快排的不稳定型体现出来了,我们使用三数取中法获得取得key的下标:

int GetMid(int arr[], int left, int right)  //返回的数组下标
{
	assert(arr);
	int mid = left + ((right - left) >> 1);
	if (arr[left] < arr[right])
	{
		if (arr[mid] < arr[left])
		{
			return left;
		}
		else if (arr[mid] > arr[right])
		{
			return right;
		}
		else
		{
			return mid;
		}
	}
	else
	{
		if (arr[mid] < arr[right])
		{
			return right;
		}
		else if (arr[mid] > arr[left])
		{
			return left;
		}
		else
		{
			return mid;
		}
	}
}


快排的时间复杂度

最坏情况下,即数组已经有序或大致有序的情况下,每次划分只能减少一个元素,快速排序将不幸退化为冒泡排序,所以快速排序时间复杂度下界为O(nlogn),最坏情况为O(n^2)。

在实际应用中,快速排序的平均时间复杂度为O(nlogn)

快排的空间复杂度

速排序空间复杂度为logn(因为递归调用了) 

稳定性
不稳定






版权声明:本文为博主原创文章,转载需标明出处。 举报

相关文章推荐

第一篇博客——快速排序

快速排序

快速排序——java实现

快速排序是一种常用且比较复杂的排序算法,最坏的情况下运行时间为O(n2) ,  期望的运行时间为O(nlgn). 快速排序采用分治思想,分治过程分为三个步骤。(ps:以下思想参考导论) 分解: 数组A...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

数据结构——快速排序算法

今天来说一说快速排序:基本思想: 任取一个元素 (如第一个) 为轴点 所有比它小的元素一律前放,比它大的元素一律后放,形成左右两个子表 对各子表重新选择中心元素并依此规则调整,直到每个子表的元素只剩一...

经典算法之——快速排序

快速排序 原理:就是利用嵌套的原理实现排序,将混乱的序列以选择的关键字为基准进行划分,使排列后的数据一边都比他小,另一边都比他大,类似于二叉树的三种遍序方式(先序,中序,后序)此处后面再说 好了源码上...

《算法导论》学习总结——第二部分3快速排序

曾经在程序员杂志上看到快速排序的作者,Hoare,曾经的图灵奖获得者啊,牛光闪闪的。不过当时,对快速排序什么的,印象不算深刻,毕竟没好好学。记得当时杂志上说到的是,快速排序,应该是目前最快的内部排序算...

快速排序——C语言实现

递归实现: void quickSort(int a[], int size) { int i = 0, j = size-1; int val; if(size < 2) ...

快速排序浅谈——(解题报告)HDU1157和POJ2388---Who's in the Middle

快速排序(快排)作为排序算法中较为常用和重要的一种,有其重要的地位,但初学可能有些晦涩,本文将较为详细的结合Who’s in the Middle这道题来讲讲快速排序的奥秘!首先是快排的简单介绍,它是...

算法导论笔记——快速排序

快速排序: 快速排序是最常用的算法之一,空间复杂度为O(logn),时间复杂度为O(nlogn),最坏情况下为O(n2) 快速排序使用分治策略,特点是每次找一个主元,根据主元与数组元素的大小,将数组...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)