排序——快速排序

原创 2016年08月31日 11:20:24

终于有时间可以把快速排序,仔细的梳理一遍了。

快排 在实际中最常用的一种排序算法,速度快,效率高。就像名字一样,快速排序是最优秀的一种排序算法。

什么是快速排序?

快排的基本思想:快排采用的是分治(PS:分开治理)的思想。

过程是这样的:1、在一组数中找到一个基准值(key)

 2、把这一组数分为小于key的一小组数,和大于key的另一小组数(按升序排列)

把小于key的一小组数放在key的左边 ,大于key的另一小组数放在key的右边

 3、重复 1、 2步骤,直到各区间只有一个数。

下面用一组数来说明:

  1 ,  3  , 5 , 6  , 4  ,  2

  

下面我们就用代码实现,通过代码在继续理解

<span style="font-family:Microsoft YaHei;font-size:14px;">//快速排序             
int Partion(int *arr, size_t left,size_t right)//单次划分区间的左右索引
{
	assert(arr);
	if (left < right)
	{
		int key = arr[right];
		int begin = left;
		int end = right ;
		while (begin != end)
		{
			while (begin < end && arr[begin] <= key)
				begin++;
			while (begin < end && arr[end] >= key)
				end--;
			if (begin < end)
				std::swap(arr[begin], arr[end]);
		}
		//把key的位置放到中间(实现划分区间)
		std::swap(arr[begin ], arr[right]);
		return begin ;
	}
	return  -1;
}
void QuickSort(int arr[], size_t left , size_t right) //left right 是索引
{
	assert(arr );
	if (left < right)
	{
		int boundary = Partion(arr, left, right);
		QuickSort(arr, left, boundary - 1);  //boundary-1 是左区间的上限
		QuickSort(arr, boundary + 1, right); //boundary+1 是右区间的下限
	}
}</span>
下面我将主要讲述,代码的单次划分区间流程



其实,还有一种方法:挖坑法

具体是这样的:

<span style="font-size:14px;">//快排 -- 挖坑法
int Partion1(int arr[],  int left,  int right)
{
	assert(arr);
	if (left < right)
	{
		int key = arr[right];
		while (left != right)
		{
			while (left < right && arr[left] <= key)
				left++;
			if (left < right)
				arr[right--] = arr[left];//right--

			while (left < right && arr[right] >= key)
				right--;
			if (left < right)
				arr[left++] = arr[right];  // left++
		}
		//最后一个坑
		arr[right] = key;
	}
	return right;
}
void QuickSort1(int arr[], const size_t left , const size_t right)
{
	assert(arr);
	if (left < right)
	{
		int Boundary = Partion1(arr, left, right);
		QuickSort1(arr, left, Boundary - 1);
		QuickSort1(arr, Boundary + 1, right);
	}
}
</span>

这个挖坑法相比于第一种方法其实就是提前把数据搬移过去了。


用递归的方法就是使用了栈的思想, 那么我们来也自己创建议一个栈实现递归的思想。同时,就实现了递归和循环之间的转换

<span style="font-size:14px;">//快排---非递归--挖坑法
int Partltion_4(int arr[], int left, int right)
{
	assert(arr);
	if (left < right)
	{
	                 //	int mid = GetMid(arr, left, right);  后面怎么给值???
		int Key = arr[right];
		while (left != right)
		{
			while (left < right && arr[left] <= Key)
				left++;
			if (left < right)
			{
				arr[right--] = arr[left]; //填坑,right向前移动
			}
			while (left < right && arr[right] >= Key)
				right--;
			if (left < right)
			{
				arr[left++] = arr[right]; //填坑,left向后移动
			}
		}
		 arr[right] = Key;  //////////////////////////////////!!!
		 return right;
	}
	
}
void QuickSort_4(int arr[], int left, int right)
{
	assert(arr);
	stack<int> s;
	if (left < right)
	{
		int boundary = Partltion_4(arr, left, right);
		if (boundary - 1 > left )
		{
			s.push(left);
			s.push(boundary - 1);
		}
		if (boundary + 1 < right)
		{
			s.push(boundary + 1);
			s.push(right);
		}
		while (!s.empty())
		{
			int end = s.top();//结束位置
			s.pop();
			int begin = s.top();// 起始位置
			s.pop();

			int Boundary = Partltion_4(arr, begin, end); //多次划分

			if (Boundary - 1 > begin) //起始边界 由left-->begin
			{
				s.push(left);
				s.push(Boundary - 1);
			}
			if (Boundary + 1 < end)  //结束边界 right -->end
			{
				s.push(Boundary + 1);
				s.push(right);
			}
		}
	}
	
}</span>


另外,在找key值的时候,可能找的不好,从而使快排的不稳定型体现出来了,我们使用三数取中法获得取得key的下标:

int GetMid(int arr[], int left, int right)  //返回的数组下标
{
	assert(arr);
	int mid = left + ((right - left) >> 1);
	if (arr[left] < arr[right])
	{
		if (arr[mid] < arr[left])
		{
			return left;
		}
		else if (arr[mid] > arr[right])
		{
			return right;
		}
		else
		{
			return mid;
		}
	}
	else
	{
		if (arr[mid] < arr[right])
		{
			return right;
		}
		else if (arr[mid] > arr[left])
		{
			return left;
		}
		else
		{
			return mid;
		}
	}
}


快排的时间复杂度

最坏情况下,即数组已经有序或大致有序的情况下,每次划分只能减少一个元素,快速排序将不幸退化为冒泡排序,所以快速排序时间复杂度下界为O(nlogn),最坏情况为O(n^2)。

在实际应用中,快速排序的平均时间复杂度为O(nlogn)

快排的空间复杂度

速排序空间复杂度为logn(因为递归调用了) 

稳定性
不稳定






版权声明:本文为博主原创文章,转载需标明出处。

相关文章推荐

STl中的排序算法

1. 所有STL sort算法函数的名字列表: 函数名             功能描述 sort          对给定区间所有元素进行排序 stable_sort     对给定区间...

利用STL中的partition完成快排

学习《STL源码剖析》p354时,发现STL中已有partition函数,这不禁让人联想到c语言实现的快排:int Partition(int k[], int low, int high) { i...

快速排序——quicksort

  • 2016年04月08日 10:52
  • 167KB
  • 下载

算法与数据结构——快速排序

  • 2007年07月09日 20:18
  • 90KB
  • 下载

中级程序员必须懂的20大基础算法(1)——快速排序

算法的入门级研究一般都是从“排序”和“查找”开始的。“排序算法”和她的姊妹“查找算法”是很多复杂算法的基础,也是很多复杂系统的基础。比如Linux中最复杂的虚拟内存管理就是基于“红-黑树”查找算法的;...

剑指offer——快速排序

快速排序是目前所有排序中性能较好的一种算法,最好情况和平均情况下时间复杂度均为O(nlogn),最坏的情况下时间复杂度为O(n^2)。快速排序采用递归,用空间换取时间。由于使用了递归,因此需要额外的存...

快速排序(迭代)——ANSI C实现

typedef int ElementType; /* * 分区信息结点(组成单链表) * * */ typedef struct PartitionNode PartitionNod...

实用算法的分析与程序设计——分治算法(归并排序,快速排序)

有许多算法在结构上是递归的:为了解决一个给定问题,算法要一次或多次地调用其自身来解决相关的子问题。这些算法通常采用分治策略:将原问题分成n个规模较小而结构与原问题相似的子问题。递归地解这些子问题,然后...

学习算法导论——快速排序

快速排序用的也是分治法,快速排序分为三个步骤: 1.分解 数组A[low..high]被划分为两个(可能为空)的子数组A[low...q-1]和A[q+1...high],使得A[low...q-1]...

快速排序中分区算法的延伸——划分多个区间

按照自己的理解,分区算法partition的核心在于:索引的变换和交换元素,也就是说按照索引将不同的元素交换到不同的区间。快排中的partition只划分了2个区间:小等于以及大于。在这里,我们划分3...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:排序——快速排序
举报原因:
原因补充:

(最多只允许输入30个字)