TOJ 4102 White Rats

本文深入探讨了如何通过算法解决实际问题,重点介绍了排序算法、动态规划、哈希算法等核心概念及其在不同场景下的应用。通过实例分析,展示了算法在提高效率、优化资源分配等方面的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The description of this problem is misunderstanding.Because I can make one LAB rats drink wines till dead.

The portal:http://acm.tju.edu.cn/toj/showp4102.html

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>

long long f[105];

void Deal_with(){
    int T;
    f[0] = 1;
    for(int i=1;i<=32;i++){
        f[i] = f[i-1] * 2;
    }
    scanf("%d",&T);
    while(T--){
        long long n;
        scanf("%lld",&n);
        for(int i=0;i<=32;i++){
            if(f[i] >= n){
                printf("%d\n",i);
                break;
            }
        }
    }
}

int main(void){
    Deal_with();
    return 0;
}



内容概要:本文详细介绍了后端开发架构的重要性、核心组件、主流架构模式及其设计与实现。文章首先阐述了后端架构对于应用和网站性能、稳定性和用户体验的关键作用,通过抖音和淘宝的例子展示了高并发场景下的架构设计。接着,文章详细解析了Web服务器(如Nginx和Apache)、应用服务器(如Node.js、Django、Spring)、数据库(关系型和非关系型)、缓存层(如Redis和Memcached)以及消息队列(如Kafka和RabbitMQ)等核心组件的功能和优缺点。随后,文章对比了单体架构、微服务架构和分布式架构的特点和适用场景,重点介绍了微服务和分布式架构在处理高并发和大数据量方面的优势。最后,文章探讨了后端架构的设计流程,包括需求分析、架构设计、技术选型、开发与测试以及部署与运维,强调了性能优化、可扩展性和高可用性的保障措施。 适用人群:具备一定编程基础,对后端开发架构感兴趣的开发者,特别是工作1-3年的研发人员。 使用场景及目标:①理解后端架构在高并发、大数据量场景下的设计思路;②掌握Web服务器、应用服务器、数据库、缓存层和消息队列等核心组件的选择和使用;③了解单体架构、微服务架构和分布式架构的区别和应用场景;④学习后端架构的设计流程,包括需求分析、技术选型、开发与测试、部署与运维等环节。 其他说明:本文不仅提供了理论知识,还结合实际案例进行了详细解释,有助于读者在实际项目中应用所学内容。同时,文章还展望了后端架构未来的发展趋势,如
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值