基于mean shift方法的目标跟踪学习

原创 2016年06月02日 10:53:40

这两天了解了一下meanshift做目标跟踪方面的知识,大概试了一下:在显微环境下(色彩比较单一,灰度图)如果发生遮挡很容易跟丢。
下面记录一下学习过程:
1. Meanshift,聚类算法 这篇博文主要讲原理的。
2. matlab练习程序(meanshift图像聚类) 这篇文章给了两个聚类的例程(试运行了第二个,可以工作),并且在文章末尾给了一些参考资料。
3. dennisaprilla/meanShift 这是GITHUB上的一个object tracking的源代码,就是用这个程序测试了我需要处理的视频。

—————————————————-2016/6/22 记——————————————-
这两天把上文第三条的代码看了一下,大致思路基本都还清晰。比如有些地方还有些模糊,比如:计算每个像素点的权重部分w(大概就是每个像素点是目标图像一部分的概率)。
又找了些论文看,感觉看理论比看代码还难懂,硬伤啊(当然有些中文论文纯属东拼西凑,作者自己都未必理解)。日后还是要再看一下。
记录一些资料:
1.《Mean-shift Tracking》 Pennsylvania State University的上课用PPT应该是。
2. 论文《Real-Time Tracking of Non-Rigid Objects using Mean Shift》这个应该好好看下的,分量重
3. 一篇硕士毕业论文《基于MeanShift的运动目标检测与跟踪研究》,硕士论文的好处在于相对来说讲得基础,不过错误也多。

版权声明:转载请注明出处,谢谢。 举报

相关文章推荐

Mean Shift Tracking: 2000-2012回顾 (新论文更新)

Mean Shift跟踪从2000年被提出至今已经经历了十余个年头,从被大量灌水到如今不屑被拿来作为比较算法,经历了辉煌高潮的 Mean-Shift based Tracking正在慢慢淡出主流tra...

MeanShift运动目标跟踪 matlab程序

MeanShift算法简介: http://blog.csdn.net/carson2005/article/details/7337432 思路简介: 1.截取跟踪目标矩阵rect 2...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

基于MeanShift的目标跟踪算法

这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法【matlab/c两个版本】       csdn贴公式比较烦...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)