Spark ML随机森林

随机森林

做分类
做回归,即预测

多个决策树构成,通过多个决策树投票结果分数进行分类,不容易出现过度拟合
在生成的过程当中分别在行方向和 列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数据,列方向上采用无放 回随机抽样得到特征子集,并据此得到其最优切分点

Spark ML优化随机森林

在 Spark 平台上,传统 单机形式的迭代方式必须要进行相应改进才能适用于分布式环境,这是因为在分布式环境下,数据也 是分布式的,算法设计不得当会生成大量的IO 操作,影响算法效率
三个优化策略
1.切分点抽样统计
在单机环境下的决策树对连续变量进行切分点选择时,一般是通过对特征点进 行排序,然后取相邻两个数之间的点作为切分点,
如果在分布式环境下 如此操作的话,会带来大量的网络传输操作,特别是当数据量达到 PB 级时,算法效率将极为低下
Spark 中的随机森林在构建决策树时,会对各分区采用一定的子特征策略进行抽样, 然后生成各个分区的统计数据,并最终得到切分点
2.切分特征装箱(Binning)
决策树的构建过程就是对特征的取值不断进行划分的过程
对于离散 的特征,如果有 M 个值,最多 个划分
如果值是有序的,那么就最多 M-1 个划分(按老,中,少的序,那么只有 m-1 个,即 2 种划分,老|中,少;老,中|少)
划分的点就是 split(切分点),划分出的区间就是 bin。对于连续特征 ,理论上 split 是无数的,在分布环境下不可能取出所有的值,因此它采用的是1中的切点抽样统计方 法
3.逐层训练(level-wise training)
单机版本的决策数生成过程是通过递归调用(本 质上是深度优先)的方式构造树,在构造树的同时,需要移动数据,将同一个子节点的数据移动到一 起
分布式环境下采用的策略是逐层构建树节点(本质上是广度优先),这样遍历所有数据的次数 等于所有树中的最大层数。每次遍历时,只需要计算每个节点所有切分点统计参数,遍历完后,根据 节点的特征划分,决定是否切分,以及如何切分

使用Spark ML分别进行回归与分类建模

0 原数据集的模样

No,year,month,day,hour,pm,DEWP,TEMP,PRES,cbwd,Iws,Is,Ir
1,2010,1,1,0,NaN,-21.0,-11.0,1021.0,NW,1.79,0.0,0.0
2,2010,1,1,1,NaN,-21,-12,1020,NW,4.92,0,0
3,2010,1,1,2,NaN,-21,-11,1019,NW,6.71,0,0
4,2010,1,1,3,NaN,-21,-14,1019,NW,9.84,0,0
5,2010,1,1,4,NaN,-20,-12,1018,NW,12.97,0,0
6,2010,1,1,5,NaN,-19,-10,1017,NW,16.1,0,0
7,2010,1,1,6,NaN,-19
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在 Java 中,可以使用 Apache SparkMLlib 库来实现随机森林。下面是一个简单的示例代码: ```java import org.apache.spark.ml.Pipeline; import org.apache.spark.ml.classification.RandomForestClassifier; import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator; import org.apache.spark.ml.feature.IndexToString; import org.apache.spark.ml.feature.StringIndexer; import org.apache.spark.ml.feature.VectorAssembler; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; // 加载数据 Dataset<Row> data = spark.read().format("libsvm").load("data/sample_libsvm_data.txt"); // 将标签转换为索引 StringIndexer labelIndexer = new StringIndexer() .setInputCol("label") .setOutputCol("indexedLabel") .fit(data); // 将特征向量组合为一个特征列 VectorAssembler assembler = new VectorAssembler() .setInputCols(new String[]{"features"}) .setOutputCol("indexedFeatures"); // 拆分数据集为训练集和测试集 Dataset<Row>[] splits = data.randomSplit(new double[]{0.7, 0.3}); Dataset<Row> trainingData = splits[0]; Dataset<Row> testData = splits[1]; // 训练随机森林模型 RandomForestClassifier rf = new RandomForestClassifier() .setLabelCol("indexedLabel") .setFeaturesCol("indexedFeatures") .setNumTrees(10); // 将索引转换为标签 IndexToString labelConverter = new IndexToString() .setInputCol("prediction") .setOutputCol("predictedLabel") .setLabels(labelIndexer.labels()); // 构建 Pipeline Pipeline pipeline = new Pipeline() .setStages(new PipelineStage[]{labelIndexer, assembler, rf, labelConverter}); // 训练模型 PipelineModel model = pipeline.fit(trainingData); // 测试模型并计算精度 Dataset<Row> predictions = model.transform(testData); MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator() .setLabelCol("indexedLabel") .setPredictionCol("prediction") .setMetricName("accuracy"); double accuracy = evaluator.evaluate(predictions); System.out.println("Test Error = " + (1.0 - accuracy)); ``` 在这个例子中,我们使用 MLlib随机森林分类器来训练一个模型。我们首先将标签转换为索引,然后将特征向量组合为一个特征列。我们使用随机森林分类器训练模型,然后将索引转换为标签。最后,我们使用测试数据测试模型,并计算精度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值