人工智能时代,你的数学基础够用吗?

转载 2017年12月05日 00:00:00

人工智能的数学基础知识有哪些?这是准备转行人工智能学习者的共同问题。如果你在学习机器学习,深度学习的过程中遭遇挫折,多半是由于数学知识的阻碍。为了搞懂这个问题,小编到处搜索答案,最终找到知乎的这个回答最为切合,那些上来就是贝叶斯、凸优化、矩阵论的还是好高骛远了一些,对我们这些数学基础知识已经遗忘殆尽的程序员还是得从头开始学起。


摘自知乎的回答

作者:者也

以下是个人读研以来感受用得最多的数学基础课,挂一漏万,大侠请补充指正

高等数学是基础中的基础,研究生以上级别的一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础

线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础

概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富(比如说问题里提到的贝叶斯网络),是个庞大的工具库,不可不会

再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路

有以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构

人工智能(AI)实际上是一个将数学、算法理论和工程实践紧密结合的领域。AI 扒开来看就是算法,也就是数学、概率论、统计学、各种数学理论的体现。

新的时代,程序员想要跨入 AI 之门,只要稍微花点时间研究一下 AI 的门道,就能知道,数学基础是第一个、也是最大的门槛。如果你看到有人说不懂数学也能搞 AI,一定要警惕,因为这可能是一种误导。下图是一个比较公认的人工智能学习路径线路图。

?

可见数学知识才是学习的的起点。试想我们在大学里学的高等数上下册、线性代数、概率与数理统计,每一门课程都要学习1个学期,所以短时间是无法快速提高的。数学是有严谨的逻辑和推理关系,比如极限是微积分的基础,微积分是概率的基础,概率又是机器学习算法的基础。直接学习最后的算法当然容易蒙圈,上来就看周志华老师的《机器学习》西瓜书能学懂的都是顶级高手,正确的路径是从基础学起结合高级算法彼此促进理解。


?

为了帮助人工智能学习者扎实掌握数学基础知识,找回学习人工智能的信心和决心,尽快转换 AI 行业,在数学领域深耕 8 年数学家(原校苑数模),联合兼备扎实数学功底和人工智能专业的高校名师,共同推出人工智能之数学基础 直播系列课」。系列课包含:高等数学、概率论、线性代数三门课程,共 110 学时手写板书,推演公式,直播+录播的形式。并配有讲师助教长期私密答疑群,切切实实地带领大家学会学懂,夯实数学基础。

讲师简介


?

徐老师


211高校名师,德国明斯特大学计算机应用技术博士。拥有 9 年的算法研究经验,熟悉机器学习、深度学习、数据分析等算法和模型。近 3 年,在机器学习、模式识别领域发表被 SCI 或 EI 检索的论文 10 余篇。主讲高等数学,线性代数,概率论与数理统计,C语言,Java语言,Matlab语言等课程,主持省级和国家级课题项目 5 项,获省教学成果二等奖(第一完成人)。

课程特点


理论性公式推演,手写板书,真正地理解数学公式背后的逻辑
实操性—讲解数学公式在人工智能中的应用意义
权威性—多年高校授课经验,深入浅出为你讲解数学理论
逻辑性—高等数学讲起,逐步深入线性代数、概率、优化理论

课程内容


导学课程

12月2日 2 学时


《高等数学》 共 39 学时

12月9日 - 1月20日

每周六日晚 7:00 - 10:00


《线性代数》 共 30 学时

1月27日 - 3月4日(2月17日18日除外)  
每周六日晚 7:00 - 10:00


《概率论》 共 39 学时

3月10日 - 4月21日

每周六日晚 7:00 - 10:00


(P.S. 如果对自己比较有信心,系列课的三门课也可以单独购买。)

课程福利


1、添加极值学院李老师微信(jizhicollege2),备注“数学基础”,前200名购课可领取 300 元优惠券 ,名额有限,先用先得;


?

李老师微信

2、购课即送  100G 人工智能资料大礼包 

3、购课学员专属私密答疑群(共享项目经验、答疑等),长期有效。


?

?

?

已有100多名高级人才加入到人数学基础课程学习中:

google工程师,清华大学毕业博士,英国留学生,南开大学教师,上海机器人工程师,一线互联网安卓、ISO开发工程师,甚至项目经理、产品经理等


?

?

?

微信扫码

立即抢 300 元优惠券

和 100G资料大礼包

?

向AI转行——人工智能工程师必学的数学基础

本文为您讲解人工智能科学必学的数学基础学科:概率论与数理统计,矩阵分析,最优化理论,凸优化,数学分析,泛函分析等等。...
  • CSDNedu
  • CSDNedu
  • 2017年11月06日 16:55
  • 5876

编程和数学基础不佳如何入门人工智能?

一、人工智能的发展现状 1.1 概念 根据维基百科的解释,人工智能是被机器展示的智力,与人类和其他动物的自然智能相反,在计算机科学中 AI 研究被定义为 “代理人软件程序”:任何能够感受周...
  • p23onzq
  • p23onzq
  • 2017年12月14日 00:00
  • 33

编程和数学基础不佳如何入门人工智能?

本文来自作者 赵宁 在 GitChat 上分享 「编程和数学基础不佳如何入门人工智能?」,「阅读原文」查看交流实录。 「文末高能」 编辑 | 哈比 一、人工智能的发展现状 1....
  • GitChat
  • GitChat
  • 2017年12月13日 00:00
  • 340

学习人工智能需要哪些必备的数学基础?

当下,人工智能成了新时代的必修课,其重要性已无需赘述,但作为一个跨学科产物,它包含的内容浩如烟海,各种复杂的模型和算法更是让人望而生畏。对于大多数的新手来说,如何入手人工智能其实都是一头雾水,比如到底...

人工智能数学基础

  • 2017年11月26日 18:03
  • 103.02MB
  • 下载

人工智能数学基础

  • 2016年03月01日 20:43
  • 452KB
  • 下载

机器学习的数学基础(一)—— 期望、方差、协方差与相关系数

0. 期望与方差期望: E[aX+bY]=aE[X]+bE[Y] E[aX+bY]=aE[X]+bE[Y] 方差: D(aX+bY)=D(aX)+D(bY)+2cov(aX,bY)=a2D(X)+...

机器学习的数学基础:向量篇

前言 在 上文 中我简单概括了矩阵的基本运算,并给出了两个应用实例。这篇文章我们继续谈谈向量。 向量是线性代数中的基本概念,也是机器学习的基础数据表示形式。例如计算机阅读文本的过程首先就会...

视觉SLAM中的数学基础 第三篇 李群与李代数

转自:http://www.cnblogs.com/gaoxiang12/p/5137454.html 致敬原作者,请移步原作者博文详细浏览 前言   在SLAM中,除了...
  • hjwang1
  • hjwang1
  • 2017年01月09日 01:17
  • 1203

机器学习数学基础- gradient descent算法(上)

为什么要了解点数学基础学习大数据分布式计算时多少会涉及到机器学习的算法,所以理解一些机器学习基础,有助于理解大数据分布式计算系统(例如spark)的设计。机器学习中一个常见的就是gradient de...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:人工智能时代,你的数学基础够用吗?
举报原因:
原因补充:

(最多只允许输入30个字)