BZOJ1003: [ZJOI2006]物流运输 Spfa+DP

原创 2016年08月29日 11:41:33

1003: [ZJOI2006]物流运输

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 6284  Solved: 2588

Description

  物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。

Input

  第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。

Output

  包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32

题解:求出所有点之间的最短路然后再DP就可以了

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int M=1005;
const int N=105;
int n,m,k,d[N],t[N][N],f[N];
bool flag[N][N],inq[N],xie[N];
int to[M],nxt[M],lj[N],w[M],cnt;
void add(int f,int t,int p)
{
	cnt++;
	to[cnt]=t;
	nxt[cnt]=lj[f];
	lj[f]=cnt;
	w[cnt]=p;
}
queue<int>Q;
int spfa(int s,int t)
{
	while(!Q.empty()) Q.pop();
	for(int i=0;i<=21;i++) d[i]=100000;
	memset(xie,0,sizeof(xie));
	memset(inq,0,sizeof(inq));
	for(int i=s;i<=t;i++)
	for(int j=1;j<=m;j++)
	if(flag[i][j]) xie[j]=1;
	inq[1]=1;
	d[1]=0;
	Q.push(1);
	while(!Q.empty())
	{
		int x=Q.front();
		Q.pop();
		for(int i=lj[x];i;i=nxt[i])
		if(!xie[to[i]]&&d[to[i]]>d[x]+w[i])
		{
			d[to[i]]=d[x]+w[i];
			if(!inq[to[i]])
			{
				Q.push(to[i]);
				inq[to[i]]=1;
			}
		}
		inq[x]=0;
	}
	return d[m];
}
int main()
{
	int q,x,y,z,d;
	scanf("%d%d%d%d",&n,&m,&k,&q);
	for(int i=1;i<=q;i++)
	{
		scanf("%d%d%d",&x,&y,&z);
	    add(x,y,z);
	    add(y,x,z); 
 	} 
	scanf("%d",&d);
	for(int i=1;i<=d;i++)
	{
		scanf("%d%d%d",&x,&y,&z);
		for(int j=y;j<=z;j++) flag[j][x]=1;
	}
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	t[i][j]=spfa(i,j);
	for(int i=1;i<=n;i++)
	{
		f[i]=t[1][i]*i;
		for(int j=0;j<i;j++)
		f[i]=min(f[i],f[j]+k+t[j+1][i]*(i-j));
	}
	printf("%d\n",f[n]);
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

[BZOJ1003][ZJOI2006]物流运输(最短路+dp)

Only hate the road when you're missing home.
  • Clove_unique
  • Clove_unique
  • 2016年05月18日 19:47
  • 1293

【ZJOI2006】物流运输

【ZJOI2006】物流运输 【题目描述】 windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。  windy想知道,在A和B之间,包括A和B,...
  • u013554919
  • u013554919
  • 2014年04月19日 00:01
  • 1327

【bzoj1003】[ZJOI2006]物流运输

1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 6331  Solved: 2610[Submit][Sta...
  • chty2018
  • chty2018
  • 2016年11月21日 13:03
  • 69

【BZOJ1003】【ZJOI2006】物流运输

【题目链接】 点击打开链接 【思路要点】 显然,两次变换线路之间所走的路一定是所能走的最短路。记\(Cost_{i,j}\)表示第\(i\)天至第\(j\)天...
  • qq_39972971
  • qq_39972971
  • 2018年01月12日 11:32
  • 34

【bzoj1003】[ZJOI2006]物流运输

1003: [ZJOI2006]物流运输 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 7861  Solved: 3291 [Submit]...
  • Joky_2002
  • Joky_2002
  • 2017年07月05日 21:39
  • 68

【ZJOI2006】【BZOJ1003】物流运输trans

Description物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的...
  • CreationAugust
  • CreationAugust
  • 2016年01月27日 15:57
  • 350

【BZOJ1003】【ZJOI2006】物流运输trans

【Description】  物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实...
  • llgyc
  • llgyc
  • 2016年03月26日 15:26
  • 104

【BZOJ1003】[ZJOI2006]物流运输trans【最短路】【DP】

被水淹没,不知所措。 #include #include using namespace std; const int maxn = 25, maxm = 405, maxq = 1000...
  • BraketBN
  • BraketBN
  • 2016年03月01日 19:02
  • 273

【bzoj1003】【ZJOI2006】【物流运输】【最短路】【动态规划】

题目大意给出一幅无向图(点数i)。
  • chunkitlau
  • chunkitlau
  • 2016年06月28日 16:04
  • 280

【DP+SPFA】【ZJOI2006】【bzoj1003】【cogs1824】物流运输trans

1824. [ZJOI2006]物流运输trans ★★☆   输入文件:bzoj_1003.in   输出文件:bzoj_1003.out   简单对比 时间限制:1 s   内存限制:162 MB...
  • morestep
  • morestep
  • 2015年03月25日 19:50
  • 708
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BZOJ1003: [ZJOI2006]物流运输 Spfa+DP
举报原因:
原因补充:

(最多只允许输入30个字)