由相机矩阵计算相机内参方法

原创 2016年06月02日 11:22:23

在又相机矩阵计算相机内参时,由于其形式为
P=KR[I|t]
其中K为相机内参,为上三角矩阵,但是一般的上三角三角形分解形式为QR分解,R为上三角矩阵

此时基于QR分解计算RQ分解

S=QR
其中
Q=q11q21q31q12q22q32q13q23q33

R=r11r12r22r13r23r33

得到
S=q11r11q21r11q31r11q11r12+q12r22q21r12+q22r22q31r12+q32r22q11r13+q12r23+q13r33q21r13+q22r23+q23r33q31r13+q32r23+q33r33


S=RQ
其中 R’ 和 Q’ 分别是 R 和 Q 按照副对角线对称的矩阵

R=r33r23r22r13r12r11

Q=q33q32q31q23q22q21q13q12q11

S=r33q33+r23q32+r13q31r22q32+r12q31r11q31r33q23+r23q22+r13q21r22q22+r12q21r11q21r33q13+r23q12+r13q11r22q12+r12q11r11q11

可以发现 S’ 为 S 按副对角线对称的矩阵
另 P 的左 3x3 矩阵为 S’ ,按副对角线对称得到 S ,将其进行 QR 分解, 将得到的 Q 和 R 分别按副对角线对称,即可得到最后的解。
R’ 为 相机模型的内参 K , Q’ 为旋转矩阵 R 。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

相机标定获得内参矩阵及其他参数

csdn博客推荐:http://blog.csdn.net/chenyusiyuan/article/details/5963256 理论方面和单目标定opencv代码网址: http:/...

图像标定 求相机内参外参

下文为使用最小二乘的方法对一幅图像进行标定,求得相机的内参、外参的参数。 Calibration Process of camera calibration: 1.      Load ca...

关于OpenCV的那些事——相机标定

这一节我们首先介绍下计算机视觉领域中常见的三个坐标系:图像坐标系,相机坐标系,世界坐标系。以及他们之间的关系。然后介绍如何使用张正友相机标定法标定相机。 图像坐标系: 理想的图像坐标系原点O1和真...

相机矩阵(Camera Matrix)

前言最近翻阅关于从2D视频或者图片中重构3D姿态的文章及其源码,发现都有关于摄像机参数的求解,查找了相关资料,做一下笔记。国际惯例,来一波参考网址透视变换、透镜畸变及校正模型、相机校正(Camera ...

三维重建学习(三)相机的标定(下)

前言 这一部分主要讲解相机的标定在matlab中的具体实现方法。 由于特殊原因,现在实现的具体代码找不到了,我会在以后重新补上。 Computation of Camera 相机矩阵的计算 Direc...
  • DzReal
  • DzReal
  • 2016年09月25日 19:02
  • 1148

摄像机内参、外参矩阵

摄像机矩阵由P由内参矩阵和外参矩阵组成,对摄像机矩阵进行QR分解可以得到内参矩阵和外参矩阵在opencv的3D重建中(opencv中文网站中:照相机定标与三维场景重建),对摄像机的内参外参有讲解: ...

内参、外参、畸变参数三种参数与相机的标定方法与相机坐标系的理解

他们是三种不同的参数。  相机的内参数是六个分别为:1/dx、1/dy、r、u0、v0、f。 dx和dy表示:x方向和y方向的一个像素分别占多少长度单位,即一个像素代表的实际物理值的大小,其是实现图像...

计算机视觉-相机内参数和外参数

相机内参数是与相机自身特性相关的参数,比如相机的焦距、像素大小等; 相机外参数是在世界坐标系中的参数,比如相机的位置、旋转方向等。 相机标定(或摄像机标定): 在图像测量过程以及机器视觉应用中,为确...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

相机模型与标定(三)--张正友标定

利用摄像机所拍摄到的图像来还原空间中的物体。在这里,不妨假设摄像机所拍摄到的图像与三维空间中的物体之间存在以下一种简单的线性关系:[像]=M[物],这里,矩阵M可以看成是摄像机成像的几何模型。 M中的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:由相机矩阵计算相机内参方法
举报原因:
原因补充:

(最多只允许输入30个字)