关于曼哈顿距离下的最小生成树

原创 2012年03月21日 14:49:00

这些天一直在集训,考了十几次……

zzy出了一道曼哈顿距离下的最小生成树,考场上我没做出来……

嗯……这种题目的问题在于,你没办法把每两个点都建一条边……

但是因为是曼哈顿距离,所以有一些特殊性质

容易证明,将某个点为原点建立笛卡尔坐标系,将坐标系分为每45°角为一块的八个区域

那么这个点向每个区域只会朝其中的某个点连边……

为什么说容易证明,因为我不会证……网上MS有这种证明的说……

贴一下zzy的题解:


所以我们只要求一个点在其45°角的区域内离他最近的点就行了,而这可以用线段树或树状数组解决

我们以y轴正半轴往右偏45°角的区域为例:

点j在点i的这个区域要满足的条件是:

yj-xj>yi-xi

且xj>xi

那么我们将点以x为第一关键字,y为第二关键字,排序后倒序插入线段树

线段树的线段这一维是离散后的y-x,值是y+x

我们要求的是大于yi-xi的最小的y+x,而xj>xi这个条件已经由插入顺序满足了

这样我们成功的解决了这个区域的点

而其他区域的点我们可以通过坐标变换转移到这个区域

由于对称性,我们注意到其实只要求x轴或y轴正半轴所在的四个区域就行了

那么这个问题就这样解决了

不过,我没有找到地方提交这个题目……只是AC了zzy的题


代码在此:题目是求最小生成树上第k大边,使用了树状数组

//Lib
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>

#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
//Macro
#define	rep(i,a,b)	for(int i=a,tt=b;i<=tt;++i)
#define	drep(i,a,b)	for(int i=a,tt=b;i>=tt;--i)
#define	erep(i,e,x)	for(int i=x;i;i=e[i].next)
#define	irep(i,x)	for(typeof(x.begin()) i=x.begin();i!=x.end();i++)
#define	read()	(strtol(ipos,&ipos,10))
#define	sqr(x)	((x)*(x))
#define	pb	push_back
#define	PS	system("pause");
typedef	long long	ll;
typedef	pair<int,int>	pii;
const int oo=~0U>>1;
const double inf=1e100;
const double eps=1e-6;
string name="BRS", in=".in", out=".out";
//Var
int n,K,cnt,tot,ans;
int lisan[100008],l[100008];
int limit=1000000008;
struct P
{
	int x,y,idx;	
	bool operator <(const P &o)const{return x<o.x||x==o.x&&y<o.y;}
}d[100008];
struct BIT
{
	static const int limit=100000;
	int s[100008],p[100008];
	void set(){rep(i,1,limit)s[i]=oo;}
	inline int lowbit(int x){return x&-x;}
	void insert(int x,int v,int pos)
	{
		for(int i=x;i>0;i-=lowbit(i))
			if(s[i]>v)s[i]=v,p[i]=pos;
	}
	int query(int x)
	{
		int ret=oo,pos=n+1;
		for(int i=x;i<=n;i+=lowbit(i))
			if(s[i]<ret)ret=s[i],pos=p[i];
		return pos;
	}
}Q;
struct E
{
	int a,b,c;
	bool operator <(const E &o)const{return c<o.c;}
}e[1000000];
struct UNION
{
	int f[100008];
	static const int limit=100000;
	void set(){rep(i,1,n)f[i]=i;}
	int find(int x){return x==f[x]?f[x]:f[x]=find(f[x]);}
	void Union(int x,int y){f[x]=y;}
}U;
void Init()
{
	scanf("%d%d",&n,&K);
	rep(i,1,n)
		scanf("%d%d",&d[i].x,&d[i].y);	
}
void Discrate()
{
	rep(i,1,n)l[i]=d[i].y-d[i].x;
	sort(l+1,l+1+n);
	rep(i,1,n)lisan[i]=lower_bound(l+1,l+1+n,d[i].y-d[i].x)-l;
}
void add(int a,int b,int c){e[++tot].a = a;e[tot].b = b;e[tot].c = c;}
int Dis(int i,int j){return abs(d[i].x - d[j].x) + abs(d[i].y - d[j].y);}
void Solve()
{
	sort(d + 1,d + 1 + n);
	Discrate();Q.set();
	int pos;
	drep(i,n,1)
	{
		pos = Q.query(lisan[i]);
		if(pos != Q.limit + 1)
			add(d[i].idx,d[pos].idx,Dis(i,pos));
		Q.insert(lisan[i],d[i].y + d[i].x,i);
	}
}
void Kruskal()
{
	sort(e+1,e+1+tot);
	int x,y;int cnt=n-K;
	U.set();
	for(int i=1;i<=tot&&cnt;i++)
	{
		x=U.find(e[i].a);y=U.find(e[i].b);
		if(x!=y)
		{
			U.Union(x,y);
			cnt--;ans=e[i].c;
		}
	}
}
void Work()
{
	rep(i,1,n)d[i].idx=i;
	rep(i,1,4)
	{
		if(i == 3)
			rep(j,1,n)d[j].x = limit - d[j].x;
		if(i == 2 || i == 4)
			rep(j,1,n)swap(d[j].x,d[j].y);
		Solve();
	}	
	Kruskal();
	cout<<ans<<endl;
}
int main()
{
	freopen((name+in).c_str(),"r",stdin);
	freopen((name+out).c_str(),"w",stdout);
	Init();
	Work();
//	PS;
	return 0;
}
不知道是因为STL还是把数据结构封装在结构体里面的原因

这个程序效率巨低,开O2和不开O2差距达到1倍以上……虽然我觉得这种写法很优美就是了……

曼哈顿距离最小生成树与莫队算法

一、曼哈顿距离最小生成树 曼哈顿距离最小生成树问题可以简述如下: 给定二维平面上的N个点,在两点之间连边的代价为其曼哈顿距离,求使所有点连通的最小代价。 朴素的算法可以用O(N2)的Prim,或...
  • huzecong
  • huzecong
  • 2013年02月08日 15:46
  • 10208

平面点曼哈顿最小生成树——POJ 3241 Object Clustering

平面点曼哈顿最小生成树——POJ 3241 Object Clustering

[BZOJ2177][最小/最大(曼哈顿距离)生成树]曼哈顿最小生成树

题意给定平面内一些点,求最小曼哈顿距离生成树看这篇咯http://blog.csdn.net/acm_cxlove/article/details/8890003#include #include ...
  • Coldef
  • Coldef
  • 2017年03月17日 19:39
  • 514

UVAlive 3662 Another Minimum Spanning Tree 莫队算法,曼哈顿最小生成树

现成的东西,就不自己写了。 转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove二维平面中有一些点,...

曼哈顿距离最小生成树

转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 二维平面中有一些点,两点之间的距离为曼哈顿距...

!HDU 4311 最小曼哈顿距离-思维&卡时间-(横纵坐标分开算,排序)

题意:有n个点,求以这n个点中的某一点为起点,到各点的曼哈顿距离和最小是多少 分析: 暴力枚举又要超时,这种题一般都是考思维了,多半都是用技巧找到一个高效的方法。个人觉得这题跟上一篇文章的题是一个类型...

HDU 4370 0 or 1(最短路)

思路:一个很裸的0/1规划的题,没接触过的话很难会朝图论的方面去想,从前两个条件其实就是点1的出度为1,点n的入度为1,然后其他点的出度等于入度,边权就是它的费用,那么建图然后最短路就可以了,这里比较...

<OJ_Sicily>LIS最长上升子序列

动态规划求解最长升序子序列

poj 3241 Object Clustering (曼哈顿距离最小生成树)

Object Clustering Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 1781...
  • whai362
  • whai362
  • 2015年10月10日 22:14
  • 268

POJ 3241 Object Clustering 曼哈顿距离最小生成树

题目大意:求出曼哈顿距离最小生成树上的第k大边权。 思路:首先,你要了解:http://blog.csdn.net/acm_cxlove/article/details/8890003 也...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:关于曼哈顿距离下的最小生成树
举报原因:
原因补充:

(最多只允许输入30个字)