# 关于曼哈顿距离下的最小生成树

zzy出了一道曼哈顿距离下的最小生成树，考场上我没做出来……

yj-xj>yi-xi

//Lib
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>

#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
//Macro
#define	rep(i,a,b)	for(int i=a,tt=b;i<=tt;++i)
#define	drep(i,a,b)	for(int i=a,tt=b;i>=tt;--i)
#define	erep(i,e,x)	for(int i=x;i;i=e[i].next)
#define	irep(i,x)	for(typeof(x.begin()) i=x.begin();i!=x.end();i++)
#define	sqr(x)	((x)*(x))
#define	pb	push_back
#define	PS	system("pause");
typedef	long long	ll;
typedef	pair<int,int>	pii;
const int oo=~0U>>1;
const double inf=1e100;
const double eps=1e-6;
string name="BRS", in=".in", out=".out";
//Var
int n,K,cnt,tot,ans;
int lisan[100008],l[100008];
int limit=1000000008;
struct P
{
int x,y,idx;
bool operator <(const P &o)const{return x<o.x||x==o.x&&y<o.y;}
}d[100008];
struct BIT
{
static const int limit=100000;
int s[100008],p[100008];
void set(){rep(i,1,limit)s[i]=oo;}
inline int lowbit(int x){return x&-x;}
void insert(int x,int v,int pos)
{
for(int i=x;i>0;i-=lowbit(i))
if(s[i]>v)s[i]=v,p[i]=pos;
}
int query(int x)
{
int ret=oo,pos=n+1;
for(int i=x;i<=n;i+=lowbit(i))
if(s[i]<ret)ret=s[i],pos=p[i];
return pos;
}
}Q;
struct E
{
int a,b,c;
bool operator <(const E &o)const{return c<o.c;}
}e[1000000];
struct UNION
{
int f[100008];
static const int limit=100000;
void set(){rep(i,1,n)f[i]=i;}
int find(int x){return x==f[x]?f[x]:f[x]=find(f[x]);}
void Union(int x,int y){f[x]=y;}
}U;
void Init()
{
scanf("%d%d",&n,&K);
rep(i,1,n)
scanf("%d%d",&d[i].x,&d[i].y);
}
void Discrate()
{
rep(i,1,n)l[i]=d[i].y-d[i].x;
sort(l+1,l+1+n);
rep(i,1,n)lisan[i]=lower_bound(l+1,l+1+n,d[i].y-d[i].x)-l;
}
void add(int a,int b,int c){e[++tot].a = a;e[tot].b = b;e[tot].c = c;}
int Dis(int i,int j){return abs(d[i].x - d[j].x) + abs(d[i].y - d[j].y);}
void Solve()
{
sort(d + 1,d + 1 + n);
Discrate();Q.set();
int pos;
drep(i,n,1)
{
pos = Q.query(lisan[i]);
if(pos != Q.limit + 1)
Q.insert(lisan[i],d[i].y + d[i].x,i);
}
}
void Kruskal()
{
sort(e+1,e+1+tot);
int x,y;int cnt=n-K;
U.set();
for(int i=1;i<=tot&&cnt;i++)
{
x=U.find(e[i].a);y=U.find(e[i].b);
if(x!=y)
{
U.Union(x,y);
cnt--;ans=e[i].c;
}
}
}
void Work()
{
rep(i,1,n)d[i].idx=i;
rep(i,1,4)
{
if(i == 3)
rep(j,1,n)d[j].x = limit - d[j].x;
if(i == 2 || i == 4)
rep(j,1,n)swap(d[j].x,d[j].y);
Solve();
}
Kruskal();
cout<<ans<<endl;
}
int main()
{
freopen((name+in).c_str(),"r",stdin);
freopen((name+out).c_str(),"w",stdout);
Init();
Work();
//	PS;
return 0;
}


• 本文已收录于以下专栏：

## 曼哈顿距离最小生成树与莫队算法

• huzecong
• 2013年02月08日 15:46
• 10603

## 平面点曼哈顿最小生成树——POJ 3241 Object Clustering

• u013351484
• 2015年08月11日 20:47
• 1043

## [BZOJ2177][最小/最大（曼哈顿距离）生成树]曼哈顿最小生成树

• Coldef
• 2017年03月17日 19:39
• 778

## 关于曼哈顿距离的最小生成树 POJ3241

• touwangyi
• 2017年08月09日 21:57
• 218

## codeforces 100959B Airports 曼哈顿距离最大生成树

• u013944294
• 2017年10月02日 18:56
• 167

## [Boruvka算法 曼哈顿距离最大生成树] 省选模拟赛 4 C. 树树树 mst

• u014609452
• 2017年03月18日 20:49
• 956

## BZOJ 2177 [曼哈顿最小生成树]

DescriptionDescription 平面坐标系xOyxOy内，给定nn个顶点V=(x,y)V = (x , y)。对于顶点u,v,uu,v,u与vv之间的距离dd定义为|xu–xv|+|...
• Vectorxj
• 2017年03月17日 19:32
• 384

## 【POJ 3241】曼哈顿最小生成树（模板整理）

• u013451221
• 2015年08月16日 21:45
• 964

## 二维平面曼哈顿距离最小生成树模版

#include #include #include #include #include #include #include #include #include #include ...
• qq574857122
• 2015年05月14日 18:39
• 1181

## UVAlive 3662 Another Minimum Spanning Tree 莫队算法，曼哈顿最小生成树

• firenet1
• 2015年08月21日 11:11
• 739

举报原因： 您举报文章：关于曼哈顿距离下的最小生成树 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)