数据结构 — 图 之 广度优先遍历

原创 2015年11月21日 13:05:48

【描述】:  图的bfs


【输入】:

8
1 2 -1
0 3 4 -1
0 5 6 -1
1 7 -1
1 7 -1
2 7 -1
2 7 -1
3 4 5 6 -1


【输出】:


0 1 2 3 4 5 6 7


/*
 *图的广度优先遍历
 *1.链式队列(链表的头节点中存数据、节点的尾插法、头节点的删除)
 *2.bfs 

8 
1 2 -1 
0 3 4 -1 
0 5 6 -1 
1 7 -1 
1 7 -1 
2 7 -1 
2 7 -1 
3 4 5 6 -1 
 */

#include<iostream>
#include<memory.h>
using namespace std;

/* 宏定义 */
#define MAX_NUM 50
#define ElementType int

/* 定义动态链式队列节点 */
typedef struct QueueNode{
    ElementType data;
    struct QueueNode *next;
}QueueNode,*QueuePointer;

/* 邻接表表节点 */
typedef struct TableNode{
    ElementType vertex;
    struct TableNode *next;
}TableNode,*TablePointer;

/* 头节点数组 */
TablePointer graph[MAX_NUM];

/* 定义visited数组 */
bool visited[MAX_NUM];

/* 顶点数 */
int vertices;

/*
 * 动态链式队列
 * 1.addq -> 入队
 * 2.deleteq -> 出队
 */
/*在链式队列的队尾插入元素*/
void addq(QueuePointer &front, QueuePointer &rear, ElementType item){
    QueuePointer temp = new QueueNode;
    temp->data = item;
    temp->next = NULL;

    //插入
    if(front){
        rear->next = temp;
    }else{
        front = temp;
    }
    rear = temp;
}

/*从链式队列的头部出队*/
ElementType deleteq(QueuePointer &front){
    QueuePointer temp = front;
    ElementType item;

    //出队
    item = temp->data;
    front = temp->next;
    delete temp;
    return item;
}

/*
 * 邻接表存储的图
 * 1.创建图
 * 2.bfs
 */
/*创建*/
void CreateGraph(){  
    ElementType ch;  
    TablePointer pnew,qnode;  
    pnew = qnode = NULL;  
  
    for(int i = 0; i < vertices; i++){  
        cin>>ch;  
        if(ch == -1) continue; /*当ch 为-1是结束该vertex的创建*/  
        //链表的头节点  
        pnew = new TableNode;  
        pnew->vertex = ch;  
        pnew->next = NULL;  
        //将头节点存入 头节点数组  
        graph[i] = pnew;  
        //尾插法创建链表  
        cin>>ch;  
        while(ch != -1){  
            //申请内存、处理数据域、处理指针域  
            qnode = new TableNode;  
            qnode->vertex = ch;  
            qnode->next =NULL;  
            //插入  
            pnew->next = qnode;  
            //更新尾指针  
            pnew = qnode;  
            cin>>ch;  
        }  
    }  
}

/*bfs*/
void bfs(ElementType v){
    TablePointer w;
    QueuePointer front, rear;
    front = rear = NULL;

    //将第一个节点输入、标记、进队
    cout<<v<<endl;
    visited[v] = true;
    addq(front, rear, v);

    //访问队列中的节点、访问与其相邻的节点、已经被visited的节点将不再访问
    while(front){
        v = deleteq(front);
	//扫vertex v 的链表
        for(w = graph[v]; w; w=w->next){
            if(!visited[w->vertex]){
                cout<<w->vertex<<" ";
		visited[w->vertex] = true;
                addq(front, rear, w->vertex);
            }
	}
    }
	cout<<endl;
}

int main(){  
  
    memset(visited,false,sizeof(visited));  
  
    cout<<"输入顶点数"<<endl;  
    cin>>vertices;  
  
    CreateGraph();  
    cout<<"广度优先遍历"<<endl;  
    bfs(0);  

    return 0;  
}  

【运行结果】:


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数据结构(C实现)------- 图的广度优先遍历

[本文是自己学习所做笔记,欢迎转载,但请注明出处:http://blog.csdn.net/jesson20121020] 算法描述:           设图G的初始状态是所有顶点均未被访问过,...

《数据结构和算法》之图的广度优先遍历

一,广度优先遍历,又称为广度优先搜索,简称BFS。举例说明,在一套房子里找一个钥匙,利用深度优先搜索就是搜索每一个房间,而广度优先搜索,是先看看钥匙有没有放在各个房间的明显位置,如果没有,再看看各个房...

【数据结构实验】图的深度优先/广度优先遍历

#include #include using namespace std; #define MAX_VERTEX_NUM 20  //最大顶点数 #define OK 0 #define ERR...

数据结构--图的理解:深度优先和广度优先遍历及其 Java 实现

遍历 图的遍历,所谓遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: 深度优先遍历广度优先遍历 深度优先 深度优先遍历,从初始访问结点出发,我...

数据结构:图的遍历--深度优先、广度优先

图的遍历是指从图中的某一顶点出发,按照一定的策略访问图中的每一个顶点。当然,每个顶点有且只能被访问一次。 在图的遍历中,深度优先和广度优先是最常使用的两种遍历方式。这两种遍历方式对无向图和有向图都是适...

【数据结构与算法】十九 二叉树遍历 BFS 广度优先 迭代算法

【数据结构与算法】十九 二叉树遍历 BFS 广度优先 迭代算法DFS - Depth First Search 迭代算法上一篇我们DFS , 深度优先算法往往使用栈来实现 , 通过栈来保存过去走过的路...

数据结构实验图论一:基于邻接矩阵的广度优先搜索遍历 sdut oj 2141

队列

数据结构实验之图论二:基于邻接表的广度优先搜索遍历

think: 1基于邻接表的广度优先搜索遍历其实需要学会建立按照结点大小顺序建立的邻接表和广度优先搜索遍历的队列思想 2按照结点大小顺序建立的邻接表就是建立有序链表,在建立有序链表的过程中需要考虑...

数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历

数据结构实验之图论一:基于邻接矩阵的广度优先搜索遍历 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Desc...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)