关闭

TensorFlow学习笔记(1)----基础概念和程序的形式

标签: TensorFlowpython
1654人阅读 评论(0) 收藏 举报
分类:

1.概念

graph:图,表示具体的计算任务
session:会话,图需要在会话中执行,一个会话可以包含很多图
tensor:张量,在此表示数据,类型是numpy::ndarray
variable:就是本意变量,图的重要组成部分
operation:简称op,是图中计算的节点,输入tensor计算后产生tensor
feed、fetch:意思是给图添加数据和获取图中的数据,因为训练过程中有些数据需要动态获得、临时给予数据

运行:
考虑到python运算的性能,肯定需要使用外部运算库,但是内外环境切换也是个很大的开销,TF如同其他主流机器学习工具,把程序通常组织成一个构建阶段一个执行阶段。构建就是说明需要一个怎样的网络模型,执行就是按照指定的优化训练模型,也包含检验输出等操作。可以看做先用python程序搭建模型,然后全部在python之外运行

2. 例子

2.1 平面拟合

需要拟合的平面:y = W1 * x1_data + W2*x2_data + b,其中,已知x1_data、x2_data和y,但是都包含一点噪声。

程序:

程序首先使用随机数产生需要拟合的数据,然后规定误差项和优化的方式,然后是训练并输出结果。优化方法有很多种不仅仅是AdagradOptimizer()。

2.2 矩阵相乘

两个比较大的矩阵相乘,分别使用GPU和CPU,比较运行时间


如果有GPU并且安装的是GPU版本的TF,程序默认是在GPU上运行的。通过指定"/gpu:0"或"/cpu:0"的形式,可以人为改变。GPU运行时间是11.6s,CPU是20.2s,节省了一些时间。

2.3 构建session的另一种方式

以上程序需要显示地使用sess.run(...)运行节点,想法自然,但TF也提供了另一种形式

2.4一个计数器--说明构建阶段和运行阶段

TF把很多操作都规定成内部的函数,先显式地规定网络,然后才是运行


2.5获取数据fetch()

程序运行时需要获取一些数据,每个节点获取的数据可以理解为:对每个点单独有通路,从底部运行过来(实际不是这样,但数据同步行类似)

2.6填充数据feed()

随时给程序填充一些数据


参考:

官方手册:https://www.tensorflow.org/versions/r0.10/get_started/index.html

中文社区:http://www.tensorfly.cn/


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:47445次
    • 积分:552
    • 等级:
    • 排名:千里之外
    • 原创:13篇
    • 转载:0篇
    • 译文:0篇
    • 评论:15条
    文章分类
    最新评论