TensorFlow学习笔记(1)----基础概念和程序的形式

原创 2016年08月29日 10:08:23

1.概念

graph:图,表示具体的计算任务
session:会话,图需要在会话中执行,一个会话可以包含很多图
tensor:张量,在此表示数据,类型是numpy::ndarray
variable:就是本意变量,图的重要组成部分
operation:简称op,是图中计算的节点,输入tensor计算后产生tensor
feed、fetch:意思是给图添加数据和获取图中的数据,因为训练过程中有些数据需要动态获得、临时给予数据

运行:
考虑到python运算的性能,肯定需要使用外部运算库,但是内外环境切换也是个很大的开销,TF如同其他主流机器学习工具,把程序通常组织成一个构建阶段一个执行阶段。构建就是说明需要一个怎样的网络模型,执行就是按照指定的优化训练模型,也包含检验输出等操作。可以看做先用python程序搭建模型,然后全部在python之外运行

2. 例子

2.1 平面拟合

需要拟合的平面:y = W1 * x1_data + W2*x2_data + b,其中,已知x1_data、x2_data和y,但是都包含一点噪声。

程序:

import tensorflow as tf
import numpy as np

# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x1_data = np.random.rand(100).astype(np.float32)
x2_data = np.random.rand(100).astype(np.float32)
y_data = x1_data * 10 + x2_data * 5 + 3 + tf.random_uniform([100], -0.1, 0.1)

# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but TensorFlow will
# figure that out for us.)

# note: W b and y just statement/container  before initialization
W1 = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
W2 = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W1 * x1_data + W2*x2_data + b

# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.AdagradOptimizer(0.6)
train = optimizer.minimize(loss)


# Before starting, initialize the variables.  We will 'run' this first.
init = tf.initialize_all_variables()

# Launch the graph.
sess = tf.Session()
sess.run(init)


# Fit the line.
for step in range(20001):
    sess.run(train)
    #if step % 20 == 0:
        #print(step, sess.run(W), sess.run(b),sess.run(loss))
        
print(step, sess.run(W1), sess.run(W2), sess.run(b),sess.run(loss))
# Learns best fit is W: [0.1], b: [0.3]
程序首先使用随机数产生需要拟合的数据,然后规定误差项和优化的方式,然后是训练并输出结果。优化方法有很多种不仅仅是AdagradOptimizer()。

2.2 矩阵相乘

两个比较大的矩阵相乘,分别使用GPU和CPU,比较运行时间

import tensorflow as tf
import numpy as np

#when put here the "cpu" is same as "gpu" , because it has been deploied on gpu or cpu
#select the fastest device automatically 
#matrix1 = np.random.rand(20000,1500).astype(np.float32)
#matrix2 = np.random.rand(1500,20000).astype(np.float32)
#product = tf.matmul(matrix1, matrix2)

with tf.Session() as sess3:
	with tf.device("/gpu:0"):#gpu 11.6s and cpu 20.2s
		matrix1 = np.random.rand(20000,1500).astype(np.float32)
		matrix2 = np.random.rand(1500,20000).astype(np.float32)
		product = tf.matmul(matrix1, matrix2)
		result = sess3.run(product)

如果有GPU并且安装的是GPU版本的TF,程序默认是在GPU上运行的。通过指定"/gpu:0"或"/cpu:0"的形式,可以人为改变。GPU运行时间是11.6s,CPU是20.2s,节省了一些时间。

2.3 构建session的另一种方式

以上程序需要显示地使用sess.run(...)运行节点,想法自然,但TF也提供了另一种形式

import tensorflow as tf
import numpy as np

#deploy a session
sess = tf.InteractiveSession()

#design the grape
matrix1 = np.random.rand(2000,1500).astype(np.float32)
matrix2 = np.random.rand(1500,2000).astype(np.float32)
product = tf.matmul(matrix1, matrix2)

#run the operation
print product.eval()

sess.close()

2.4一个计数器--说明构建阶段和运行阶段

TF把很多操作都规定成内部的函数,先显式地规定网络,然后才是运行

import tensorflow as tf

#design the graph
state = tf.Variable(0, name="counter")

one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

#initialization
init_op = tf.initialize_all_variables()

#run 
with tf.Session() as sess:
	sess.run(init_op)
	print sess.run(state)

	for _ in range(3):
		sess.run(update)
		print sess.run(state)

2.5获取数据fetch()

程序运行时需要获取一些数据,每个节点获取的数据可以理解为:对每个点单独有通路,从底部运行过来(实际不是这样,但数据同步行类似)

import tensorflow as tf

input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)

intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)

with tf.Session() as sess:
	result = sess.run([mul, intermed])
	print result
	result = sess.run([intermed])
	print result

2.6填充数据feed()

随时给程序填充一些数据

import tensorflow as tf
import numpy as np

input1 = tf.placeholder(tf.float32,shape=(5, 5))
input2 = tf.placeholder(tf.float32,shape=(5, 5))
output = tf.matmul(input1, input2)#matmul is different mul

with tf.Session() as sess:
	rand_array = np.ones([5, 5])
	print sess.run([output], feed_dict={input1: rand_array,input2: rand_array})

参考:

官方手册:https://www.tensorflow.org/versions/r0.10/get_started/index.html

中文社区:http://www.tensorfly.cn/


TensorFlow 简介及基本概念

一、TensorFlow 简介1、TensorFlow 的定义 Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow代表着张量从图象的一端流动到另一端计...
  • mzpmzk
  • mzpmzk
  • 2017年06月22日 22:53
  • 449

TensorFlow基本概念

tensorflow 提供两个层次的API,底层的TensorFlow Core提供完整的控制,适用于研究者。高层的使用起来则更简单,如tf.contrib.learn,但是contrib仍在更新中T...

TensorFlow系列03——TensorFlow基本概念Tensor理解

【前言】这篇文章将告诉你tensorflow的基本概念以及tensorflow的基本操作 TensorFlow的基本概念Tensor TensorFlow的核心API TensorFlow提供非...

TensorFlow的一些基本概念

本篇要点: 1. TensorFlow框架的总体认识 2. graph的概念 3. tensor的概念 4. session的概念 5. 占位符和feed...

Tensorflow一些常用基本概念与函数(1)

摘要:本文主要对tf的一些常用概念与方法进行描述。
  • lenbow
  • lenbow
  • 2016年08月08日 16:00
  • 59562

Tensorflow中的fetch与feed

在Tensorflow的使用中,取回训练结果使用两种方法: (1)fetch 可以传入一些tensor来传回运行结果,比如下面代码中的mul指定传入方法,intermed作为传回结果的张量 ...

TensorFlow 基本使用

Tensorflow的基本使用简介。
  • YhL_Leo
  • YhL_Leo
  • 2016年02月02日 13:35
  • 38938

自己用到的TensorFlow的几种输入

本文列举了自己在最近用到过的几种TensorFlow输入方式,包括从原图读取,从CSV (TXT)读取,以及从bin file读取。 1, 从原图读取。 很多情况下我们的图片训练集就是原始...
  • jyshee
  • jyshee
  • 2016年09月17日 22:14
  • 15328

使用TensorFlow编写识别数字的CNN训练程序详解

文本代码基于TensorFlow 0.12.0版本,使用tf.contrib.learn封装的方法来实现CNN。 CNN的结构从网上借用一张图片来表示一下,是一个有2层hidden layer的C...

TensorFlow学习笔记

概念 TensorFlow计算方式 TensorFlow内建运算操作 variable标量的特殊性 参考内容概念TensorFlow计算方式TensorFlow中的计算可以被表示为一个有向图,或者叫计...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:TensorFlow学习笔记(1)----基础概念和程序的形式
举报原因:
原因补充:

(最多只允许输入30个字)