BZOJ 1513 POI2006 Tet-Tetris 3D 二维线段树

38 篇文章 0 订阅
9 篇文章 0 订阅

题目大意:给定一个矩阵,初始每个位置上的元素都是0,每次选择一个子矩形,将这个子矩形内的值修改为这个子矩形内的最大值+ h <script id="MathJax-Element-141" type="math/tex">h</script>,求最终所有位置上的最大值

我们需要维护一种数据结构,支持更新子矩形的值和查询子矩形最大值

似乎二维线段树就可以了?

但是YY了一下我们会发现两个没法解决的问题:
1.标记的下传
2.信息的上传

其实。。。

第一个很好办嘛!不下传不就好了!
标记永久化,无需下传,只要查询的时候对线段树路径上的每一个点都询问一遍就行了!

那么第二个呢?

第二个很好办嘛!不上传不就好了!
由于修改只会使元素的值增大,因此区间内只要有任意一个位置被更新过,那么就会对询问的答案产生影响
因此只需要修改的时候对线段树路径上的每一个点都修改一下就好了

于是我们维护两个标记:A标记和B标记
A标记在修改的时候精确覆盖到线段树上的每个对应节点上,查询的时候需要对所有对应节点到根的路径上的所有节点都查询
B标记恰好相反

这样就行了。。。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 1010
using namespace std;

int n,m,q,ans;

struct Segtree{
    Segtree *ls,*rs;
    int val,mark;
    void* operator new (size_t)
    {
        static Segtree *mempool,*C;
        if(C==mempool)
            mempool=(C=new Segtree[1<<15])+(1<<15);
        C->ls=C->rs=0x0;
        C->val=C->mark=0;
        return C++;
    }
    void Update(int val)
    {
        this->val=max(this->val,val);
        mark=max(mark,val);
    }
    void Push_Up()
    {
        val=max(ls->val,rs->val);
    }
    void Push_Down()
    {
        if(!ls) ls=new Segtree;
        if(!rs) rs=new Segtree;
        if(mark)
        {
            ls->Update(mark);
            rs->Update(mark);
            mark=0;
        }
    }
    void Update(int x,int y,int l,int r,int val)
    {
        int mid=x+y>>1;
        if(x==l&&y==r)
        {
            Update(val);
            return ;
        }
        Push_Down();
        if(r<=mid)
            ls->Update(x,mid,l,r,val);
        else if(l>mid)
            rs->Update(mid+1,y,l,r,val);
        else
            ls->Update(x,mid,l,mid,val) , rs->Update(mid+1,y,mid+1,r,val) ;
        Push_Up();
    }
    int Query(int x,int y,int l,int r)
    {
        int mid=x+y>>1;
        if(x==l&&y==r)
            return val;
        Push_Down();
        if(r<=mid)
            return ls->Query(x,mid,l,r);
        if(l>mid)
            return rs->Query(mid+1,y,l,r);
        return max( ls->Query(x,mid,l,mid) , rs->Query(mid+1,y,mid+1,r) );
    }
};

struct abcd{
    abcd *ls,*rs;
    Segtree *A,*B;
    void* operator new (size_t)
    {
        static abcd mempool[M<<1],*C=mempool;
        C->A=new Segtree;
        C->B=new Segtree;
        return C++;
    }
    void Build_Tree(int x,int y)
    {
        int mid=x+y>>1;
        if(x==y)
            return ;
        (ls=new abcd)->Build_Tree(x,mid);
        (rs=new abcd)->Build_Tree(mid+1,y);
    }
    void Update(int x,int y,int l1,int r1,int l2,int r2,int val)
    {
        int mid=x+y>>1;
        B->Update(1,m,l2,r2,val);
        if(x==l1&&y==r1)
        {
            A->Update(1,m,l2,r2,val);
            return ;
        }
        if(r1<=mid)
            ls->Update(x,mid,l1,r1,l2,r2,val);
        else if(l1>mid)
            rs->Update(mid+1,y,l1,r1,l2,r2,val);
        else
            ls->Update(x,mid,l1,mid,l2,r2,val) , rs->Update(mid+1,y,mid+1,r1,l2,r2,val) ;
    }
    int Query(int x,int y,int l1,int r1,int l2,int r2)
    {
        int mid=x+y>>1;
        int re=A->Query(1,m,l2,r2);
        if(x==l1&&y==r1)
            return max(re, B->Query(1,m,l2,r2) );
        if(r1<=mid)
            return max(re, ls->Query(x,mid,l1,r1,l2,r2) );
        if(l1>mid)
            return max(re, rs->Query(mid+1,y,l1,r1,l2,r2) );
        return max(max( ls->Query(x,mid,l1,mid,l2,r2) , rs->Query(mid+1,y,mid+1,r1,l2,r2) ),re);
    }
}*tree=new abcd;

int main()
{
    int i,x1,y1,x2,y2,h;
    cin>>n>>m>>q;
    tree->Build_Tree(1,n);
    for(i=1;i<=q;i++)
    {
        scanf("%d%d%d%d%d",&x2,&y2,&h,&x1,&y1);
        x2+=x1;y2+=y1;x1++;y1++;
        int height=tree->Query(1,n,x1,x2,y1,y2);
        ans=max(ans,height+h);
        tree->Update(1,n,x1,x2,y1,y2,height+h);
    }
    cout<<ans<<endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值