Oracle数据库导入导出

转载 2007年09月19日 13:32:00
 

Oracle数据导入导出imp/exp

功能:Oracle数据导入导出imp/exp就相当与oracle数据还原与备份。
 大多情况都可以用Oracle数据导入导出完成数据的备份和还原(不会造成数据的丢失)。
 
 Oracle有个好处,虽然你的电脑不是服务器,但是你装了oracle客户端,并建立了连接
 (通过net8 assistant中本地-->服务命名 添加正确的服务命名
 其实你可以想成是客户端与服务器端修了条路,然后数据就可以被拉过来了)
 这样你可以把数据导出到本地,虽然可能服务器离你很远。
 你同样可以把dmp文件从本地导入到远处的数据库服务器中。
 利用这个功能你可以构建俩个相同的数据库,一个用来测试,一个用来正式使用。
 
执行环境:可以在SQLPLUS.EXE或者DOS(命令行)中执行,
 DOS中可以执行时由于 在oracle 8i 中  安装目录/ora81/BIN被设置为全局路径,
 该目录下有EXP.EXE与IMP.EXE文件被用来执行导入导出。
 oracle用java编写,我想SQLPLUS.EXE、EXP.EXE、IMP.EXE这俩个文件是被包装后的类文件。
 SQLPLUS.EXE调用EXP.EXE、IMP.EXE他们所包裹的类,完成导入导出功能。
 
下面介绍的是导入导出的实例,向导入导出看实例基本上就可以完成,因为导入导出很简单。
数据导出:
 1 将数据库TEST完全导出,用户名system 密码manager 导出到D:/daochu.dmp中
   exp system/manager@TEST file=d:/daochu.dmp full=y
 2 将数据库中system用户与sys用户的表导出
   exp system/manager@TEST file=d:/daochu.dmp owner=(system,sys)
 3 将数据库中的表table1 、table2导出
   exp system/manager@TEST file=d:/daochu.dmp tables=(table1,table2) 
 4 将数据库中的表table1中的字段filed1以"00"打头的数据导出
   exp system/manager@TEST file=d:/daochu.dmp tables=(table1) query=/" where filed1 like '00%'/"
 
     上面是常用的导出,对于压缩我不太在意,用winzip把dmp文件可以很好的压缩。
                     不过在上面命令后面 加上 compress=y  就可以了

数据的导入
 1 将D:/daochu.dmp 中的数据导入 TEST数据库中。
   imp system/manager@TEST  file=d:/daochu.dmp
   上面可能有点问题,因为有的表已经存在,然后它就报错,对该表就不进行导入。
   在后面加上 ignore=y 就可以了。
 2 将d:/daochu.dmp中的表table1 导入
 imp system/manager@TEST  file=d:/daochu.dmp  tables=(table1) 
 
 基本上上面的导入导出够用了。不少情况我是将表彻底删除,然后导入。
 
注意:
 你要有足够的权限,权限不够它会提示你。
 数据库时可以连上的。可以用tnsping TEST 来获得数据库TEST能否连上。

相关文章推荐

oracle数据库导入导出

oracle数据库导入导出命令

Oracle数据导入导出imp/exp 功能:Oracle数据导入导出imp/exp就相当与oracle数据还原与备份。   大多情况都可以用Oracle数据导入导出完成数据的备份和还原(...

Oracle数据库导入导出

  • 2008-12-03 09:32
  • 32KB
  • 下载

Oracle数据库导入导出工具

  • 2008-09-29 16:10
  • 230KB
  • 下载

Oracle数据库导入导出命令

网摘一: Oracle数据导入导出imp/exp  功能:Oracle数据导入导出imp/exp就相当与oracle数据还原与备份。   大多情况都可以用Oracle数据导入导出完成数据的备份...

oracle数据库导入导出

Oracle数据库导入导出命令总结

关于expdp和impdp 使用EXPDP和IMPDP时应该注意的事项: EXP和IMP是客户端工具程序,它们既可以在客户端使用,也可以在服务端使用。 - EXPDP和IMPDP是服务端的工具程序,他...

oracle数据库导入导出

内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)