hdoj2767Proving Equivalences【scc+缩点】

原创 2015年11月20日 21:21:33

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4470    Accepted Submission(s): 1577


Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0. 

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
 

Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 

Output
Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
 

Sample Input
2 4 0 3 2 1 2 1 3
 

Sample Output
4 2
 

Source
 
题意 :同hdoj3836
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<stack>
#include<vector>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=100010;
int dfs_clock,scc_cnt;
int head[maxn];
int low[maxn];
int dfn[maxn];
int in[maxn];
int out[maxn];
int sccno[maxn];
bool instack[maxn];
stack<int>S;
vector<int>scc[maxn];
vector<int>G[maxn];
struct Node{
    int from,to,next;
}A[maxn];
int MAX(int a,int b){
    return a>b?a:b;
}
int MIN(int a,int b){
    return a<b?a:b;
}
void init(){
    dfs_clock=scc_cnt=0;
    memset(low,0,sizeof(low));
    memset(dfn,0,sizeof(dfn));
    memset(in,0,sizeof(in));
    memset(out,0,sizeof(out));
    memset(instack,false,sizeof(instack));
    memset(head,-1,sizeof(head));
    memset(sccno,0,sizeof(sccno));
}
void tarjan(int u,int pre){
    int v;
    dfn[u]=low[u]=++dfs_clock;
    instack[u]=true;S.push(u);
    for(int k=head[u];k!=-1;k=A[k].next){
        v=A[k].to;
        if(!dfn[v]){
        	tarjan(v,u);
            low[u]=MIN(low[u],low[v]);
        }
        else if(instack[v]){
            low[u]=MIN(low[u],dfn[v]);
        }
    }
    if(low[u]==dfn[u]){
        scc_cnt++;scc[scc_cnt].clear();
        G[scc_cnt].clear();
        while(1){
            v=S.top();S.pop();
            instack[v]=false;
            sccno[v]=scc_cnt;
            scc[scc_cnt].push_back(v);
            if(u==v)break;
        }
    }
}
void suodian(int m){
    for(int i=0;i<m;++i){
        int u=sccno[A[i].from];
        int v=sccno[A[i].to];
        if(u!=v){
            G[u].push_back(v);
            in[v]++;out[u]++;
        }
    }
}
int main()
{
    int i,j,k,n,m,t;
    scanf("%d",&t);
    while(t--){    
        init();
        scanf("%d%d",&n,&m);
        for(i=0;i<m;++i){
            scanf("%d%d",&A[i].from,&A[i].to);
            A[i].next=head[A[i].from];
            head[A[i].from]=i;
        }
        for(i=1;i<=n;++i){
            if(!dfn[i]){
                tarjan(i,-1);
            }
        }
        if(scc_cnt==1){
            printf("%d\n",0);
            continue;
        }
        suodian(m);
        int ans1=0,ans2=0;
        for(i=1;i<=scc_cnt;++i){
            if(in[i]==0)ans1++;
            if(out[i]==0)ans2++;
        }
        printf("%d\n",MAX(ans1,ans2));
    }
    return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

HDOJ 2767 Proving Equivalences

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2767 题意:给你一个些点的关系,然后问你还需要加多少条边可以使这个图变成强连通,也就是每个点都可以通...
  • RaAlGhul
  • RaAlGhul
  • 2016年04月11日 15:36
  • 293

hdoj--2767--Proving Equivalences (scc+缩点)

Proving Equivalences Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Oth...
  • qq_29963431
  • qq_29963431
  • 2015年10月23日 20:38
  • 179

hdu 2767 Proving Equivalences (Kosaraju+缩点)

题目链接:   hdu 2767 题目大意:   给定有向图,问至少加入多少条边可以使得其成为联通图 解题思路:   Kosaraju找联通分量,并缩成点                   缩点之后...
  • qq7366020
  • qq7366020
  • 2013年10月22日 18:13
  • 877

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点)

HDU 2767 Proving Equivalences(强连通 Tarjan+缩点) ACM 题目地址:HDU 2767 题意:  给定一张有向图,问最少添加几条边使得有向图成...
  • hcbbt
  • hcbbt
  • 2014年07月30日 15:40
  • 2282

poj2186Popular Cows【scc+缩点】

Language: Default Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total S...
  • R1986799047
  • R1986799047
  • 2015年11月19日 11:45
  • 248

hdoj-1827-Summer Holiday(scc+缩点)

Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)...
  • qq_29963431
  • qq_29963431
  • 2015年10月23日 17:49
  • 178

poj--2186--Popular Cows (scc+缩点)

Popular Cows Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) To...
  • qq_29963431
  • qq_29963431
  • 2015年10月23日 21:27
  • 176

poj--1236--Network of Schools(scc+缩点)

Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1406...
  • qq_29963431
  • qq_29963431
  • 2016年01月12日 15:27
  • 164

hdoj1827Summer Holiday【scc+缩点】

Summer Holiday Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...
  • R1986799047
  • R1986799047
  • 2015年11月18日 22:21
  • 238

hdu2767 Proving Equivalences(缩点)

在 n 个节点的有向图m 条边,最少增加多少条边将原图变成一个强连通图。 缩点之后 入度为0的点和出度为0的点中大的就是答案。 #include #include #include using n...
  • hill_555
  • hill_555
  • 2013年07月31日 16:24
  • 364
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdoj2767Proving Equivalences【scc+缩点】
举报原因:
原因补充:

(最多只允许输入30个字)