关闭

线性代数复习分析(线性方程组)

229人阅读 评论(0) 收藏 举报
分类:

3.1数字线性方程组
in this part , two question may be asked
1.find the exact solution
2.find the general solution
3.find the common solution
two basic way:Gaussian elimination and the crammer law
a mixed question



4.2带参数齐次方程组
the way
use the det to determine the existence of the solution

question1

description:please find the value of the a , which enables the matrix can have the nonverbal solution , and describe the general solution
83a+372a+213a+374a(condition)

solution

then the let the det == 0
then we can get that
4a25a+9==0(1)

then
a==1ora==94(2)
;
in the former situlation
we can get
X=k(13,53,1)(solution 1)

in the latter
we can get that
X=k(198,618,1)

4.3数字非齐次方程组 4.4带参数非齐次方程组
the same way , deal with the augmented matrix not the coefficient matrix,or use the crammer law,also the questions ,but much more difficult and boring to calculate ,and please note the combination of different fields
loading

0
0
查看评论

线性代数: 求解齐次线性方程组,列出步骤

题目:求解其次线性方程组              x1  +  2x2 + 2x3  + x4=0              2...
  • zhengleiqing
  • zhengleiqing
  • 2016-03-16 14:51
  • 4901

【线性代数】线性方程组的求解

上一篇文章讲述了Ax=0的解和矩阵A的零空间,这里我们讨论Ax=b的解以及矩阵A的列空间。 Ax=0是肯定有解的,因为总存在x为全零向量,使得方程组成立。而Ax=b是不一定有解的,我们需要高斯消元来确定。我们还是利用上一篇讲述了Ax=0的解的矩阵A来举例说明: 我们可以得到上述方程组的增广矩阵(...
  • tengweitw
  • tengweitw
  • 2014-11-08 15:16
  • 3110

线性代数复习 第四章 线性方程组

第四章 线性方程组4.1 高斯消元法基本概念基本上,研究矩阵和线性代数,就是为了求解方程组,三种基本的矩阵变换也是和方程的变换相等价的,如交换两组方程组的位置,把方程的两边同时乘以一个非零常数,方程组的叠加等,都不会改变方程的解。高斯消元法(用初等变换求线性方程组的解)利用初等变换,可以把增广矩阵转...
  • zhangxb35
  • zhangxb35
  • 2016-09-11 17:48
  • 771

【线性代数】矩阵与线性方程组的几何意义

有线性方程组Ax=bAx=b。本文以三维为例,讨论其物理意义。 解的物理意义 上述线性方程组包含若干个三元一次方程: a11x1+a12x2+a13x3=b1a_{11}x_1+a_{12}x_2+a_{13}x_3 = b_1 a21x1+a22x2+a23x3=b2a_{21}x...
  • shenxiaolu1984
  • shenxiaolu1984
  • 2017-02-07 19:28
  • 1871

线性代数复习一——线性代数中的线性方程组

线性代数的一些总结
  • qq_28306361
  • qq_28306361
  • 2016-03-03 13:41
  • 470

线性代数:第四章 向量组的线性相关性(2)向量空间 线性方程组解的结构

第三节 向量空间 一.数字概念 定义3.1  设V是n维向量集合,且非空,若 (i)  则,  ; (ii)  则  。 则称V是一个向量空间。 定义3.2  ...
  • GarfieldEr007
  • GarfieldEr007
  • 2016-03-03 14:40
  • 1544

知乎上的一个关于线代的通俗简单理解方法写的不错转过来

作者:张一苇 链接:https://www.zhihu.com/question/21351965/answer/31050145 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 本题目前下面的解释都是线性代数教材上的各种定义,但都太过复杂了。我尝试写一个浅显的解释: 小明今天要做饭,消...
  • luopeiyuan1990
  • luopeiyuan1990
  • 2017-01-16 14:39
  • 906

《线性代数及其应用》总结1 整体理解

一、矩阵和线性代数的关系 第一,众所周知,线性代数的一个问题是解线性方程组。矩阵是一种用来简化线性方程组表示的工具。 第二,矩阵可以表示一种线性映射,称为矩阵映射,写做T(x) = Ax,其中A是一个矩阵,x 和T(x) 是向量。所有矩阵映射都是线性映射,但线性映射不全都能表示为矩阵映射。 二...
  • vincent_hbl
  • vincent_hbl
  • 2018-01-06 19:54
  • 67

matlab-线性代数 简单方程组求根(有唯一解) 非齐次线性方程组:常数项不全为零

慈心积善融学习,技术愿为有情学。善心速造多好事,前人栽树后乘凉。我今于此写经验,愿见文者得启发。 % 2x+2y-z=10 % -x+3y+2z=5 % x-y-z=-1 a=[2 2 -1;-1 3 2;1 -1 -1] b=[10;5;-1] x=a\b...
  • yushaopu
  • yushaopu
  • 2016-06-28 14:29
  • 784

线性方程组的直接解法

GAUSS列主消元法求解nn元线性方程组的最简单直接求解方法,学过线性代数的人都应该知道,即求解线性方程组 ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪a11x1+a12x2+...+a1jxi+...+a1nxn=b1...ai1x1+ai2x2+...+aijxi+... +ainxn=bi.....
  • Dylan_Frank
  • Dylan_Frank
  • 2016-09-21 00:31
  • 1079
    个人资料
    • 访问:16178次
    • 积分:652
    • 等级:
    • 排名:千里之外
    • 原创:48篇
    • 转载:1篇
    • 译文:0篇
    • 评论:8条
    文章分类
    最新评论