POJ2104 K-th Number 题解&代码

17 篇文章 0 订阅
13 篇文章 0 订阅

你说什么?和HDU题目一样?不不不这才不是多组数据= =
HDU的题解:http://blog.csdn.net/Rainbow6174/article/details/50374737
其实重点在于我终于知道为什么我一直TLE了…map被卡了那个萌萌哒logn
所谓STL一时爽全家火葬场,改了数组记录之后过得轻轻松松
代码如下【一会去把hdu的排序也改一下重交试试

#include<iostream>
#include<algorithm>
#include<map>
#include<string.h>
#include<stdio.h>
using namespace std;
const int maxn=100005;
int T,m,n,L,R,K,tot,cnt,line[maxn],vis[maxn],p[maxn],r[maxn];
int tree[maxn*20],son[2][maxn*20],rt[maxn];
void add_tree(int rl,int rn,int l,int r,int value)
{
    tree[rn]=tree[rl]+1;
    if(l==r)return;
    int mid=(l+r)/2;
    if(value>mid)son[0][rn]=son[0][rl],son[1][rn]=++tot,add_tree(son[1][rl],son[1][rn],mid+1,r,value);
    else son[1][rn]=son[1][rl],son[0][rn]=++tot,add_tree(son[0][rl],son[0][rn],l,mid,value);
}
int query(int rl,int rn,int l,int r,int k)
{
    if(l==r)return vis[l];
    int mid=(l+r)/2;
    if(k>tree[son[0][rn]]-tree[son[0][rl]])return query(son[1][rl],son[1][rn],mid+1,r,k-tree[son[0][rn]]+tree[son[0][rl]]);
    else return query(son[0][rl],son[0][rn],l,mid,k);
}
bool cmp(int a,int b)
{
    return line[a]<line[b];
}
int main(void)
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&line[i]);
        p[i]=i;
    }
    sort(p+1,p+1+n,cmp);
    for(int i=1;i<=n;i++)
    {
        vis[i]=line[p[i]];
        r[p[i]]=i;
    }
    for(int i=1;i<=n;i++)
    {
        rt[i]=++tot;
        add_tree(rt[i-1],rt[i],1,n,r[i]);
    }
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&L,&R,&K);
        printf("%d\n",query(rt[L-1],rt[R],1,n,K));
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
POJ3635是一道经典的数学题,需要使用一些数学知识和算法进行解决。 题目描述: 给定四个正整数 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指数 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制数的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函数用于获取二进制数的位数,testBit() 函数用于判断二进制数的第 i 位是否为 1,modPow() 函数用于计算 a^(2^i) mod k 的值,multiply() 函数用于计算两个 BigInteger 对象的乘积,mod() 函数用于计算模数。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指数。由于 b^p 的位数不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的数学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值