关闭

ZOJ 3609 Modular Inverse(乘法逆元)

标签: 乘法逆元ZOJ数论
144人阅读 评论(0) 收藏 举报
分类:

题目链接:
ZOJ 3609 Modular Inverse
题意:
求ax = 1 (mod n),给出a,n的最小正数解x,如果不存在输出Not Exist.
分析:
用扩展欧几里德求乘法逆元。注意是最小正数解!而不是非负数解!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <climits>
#include <cmath>
#include <ctime>
#include <cassert>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
using namespace std;
typedef long long ll;

ll ex_gcd(ll a, ll b, ll& x, ll& y)
{
    if(b == 0) {
        x = 1, y = 0;
        return a;
    }
    ll d = ex_gcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

int main()
{
    int T;
    ll a, b;
    scanf("%d", &T);
    while(T--){
        scanf("%lld%lld", &a, &b);
        ll x, y;
        ll d = ex_gcd(a, b, x, y);
        if(d != 1) printf("Not Exist\n");
        else{ 
            x = (x % b + b) % b;
            if(x == 0) x = b;
            printf("%lld\n", x);
        }
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:91672次
    • 积分:5351
    • 等级:
    • 排名:第5020名
    • 原创:463篇
    • 转载:3篇
    • 译文:0篇
    • 评论:11条
    封神之路
    最新评论