关闭

HDU 1576 A/B(乘法逆元、费马小定理)

标签: 数论HDU乘法逆元费马小定理
193人阅读 评论(0) 收藏 举报
分类:

题目链接:
HDU 1576 A/B
题意:
已知A%9973 = n,gcd(B, 9973)=1,给出n和B求A/B%9973.
分析:
裸的乘法逆元。利用费马小定理:因为gcd(B, 9973) = 1,且9973为质数,所以A/B%9973 = A%9973 * B^(9973 - 2) % 9973.

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <climits>
#include <cmath>
#include <ctime>
#include <cassert>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
using namespace std;
typedef long long ll;
const int mod = 9973;

int T;
ll n, B;

ll quick_pow(ll a, ll b)
{
    ll res = 1, tmp = a % mod;
    while(b){
        if(b & 1) res = res * tmp % mod;
        tmp = tmp * tmp % mod;
        b >>= 1;
    }
    return res;
}

int main()
{
    scanf("%d", &T);
    while(T--){
        scanf("%lld%lld", &n, &B);
        ll ans = quick_pow(B, mod - 2);
        printf("%lld\n", ans * n % mod);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:94333次
    • 积分:5375
    • 等级:
    • 排名:第5032名
    • 原创:463篇
    • 转载:3篇
    • 译文:0篇
    • 评论:11条
    封神之路
    最新评论