259人阅读 评论(0)

# hdu 4848 Wow! Such Conquering!

## 题目:

There are n Doge Planets in the Doge Space. The conqueror of Doge Space is Super Doge, who is going to inspect his Doge Army on all Doge Planets. The inspection starts from Doge Planet 1 where DOS (Doge Olympic Statue) was built. It takes Super Doge exactly T xy time to travel from Doge Planet x to Doge Planet y.
With the ambition of conquering other spaces, he would like to visit all Doge Planets as soon as possible. More specifically, he would like to visit the Doge Planet x at the time no later than Deadline x. He also wants the sum of all arrival time of each Doge Planet to be as small as possible. You can assume it takes so little time to inspect his Doge Army that we can ignore it.
Input
There are multiple test cases. Please process till EOF.
Each test case contains several lines. The first line of each test case contains one integer: n, as mentioned above, the number of Doge Planets. Then follow n lines, each contains n integers, where the y-th integer in the x-th line is T xy . Then follows a single line containing n - 1 integers: Deadline 2 to Deadline n.
All numbers are guaranteed to be non-negative integers smaller than or equal to one million. n is guaranteed to be no less than 3 and no more than 30.
Output
If some Deadlines can not be fulfilled, please output “-1” (which means the Super Doge will say “WOW! So Slow! Such delay! Much Anger! … ” , but you do not need to output it), else output the minimum sum of all arrival time to each Doge Planet.

## 代码：

#include <iostream>
#include <stdio.h>
#include <limits.h>
#include <algorithm>
#include <string.h>
#define inf 0x3f3f3f3f
using namespace std;
int maps[40][40];
bool vis[40];
int minn=inf,n;
void floyd()
{
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
maps[i][j]=(maps[i][j]<maps[i][k]+maps[k][j]?maps[i][j]:maps[i][k]+maps[k][j]);
}
void dfs(int cur,int num,int time,int sum)
{
if(num==n)
{
minn=(sum<minn?sum:minn);
return;
}
if(minn<sum)//最优剪枝
return ;
for(int i=2;i<=n;i++)//超时剪枝
return ;
for(int i=2;i<=n;i++)
if(!vis[i])
{
vis[i]=true;
dfs(i,num+1,time+maps[cur][i],maps[cur][i]*(n-cur)+sum);
vis[i]=false;
}
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
minn=INT_MAX;
memset(maps,0,sizeof(maps));
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&maps[i][j]);
for(int i=2;i<=n;i++)
floyd();
vis[1]=true;
dfs(1,1,0,0);
if(minn==INT_MAX)
printf("-1\n");
else
printf("%d\n",minn);
}
return 0;
}

P.S.我在floyd时还记录了路径，想的是保证是不是每次走的路径上除了终点都是已经走过的，以保证floyd算法不会导致因路上的点没有走过而受影响，但想了想那样肯定不是最优解啊，可能因为每次都要判断反而慢了吧。。。

个人资料
等级：
访问量： 4210
积分： 241
排名： 31万+
文章存档