关闭

洛谷 P1144 最短路计数

185人阅读 评论(0) 收藏 举报
分类:

题目描述
给出一个N个顶点M条边的无向无权图,顶点编号为1~N。问从顶点1开始,到其他每个点的最短路有几条。
输入输出格式
输入格式:

输入第一行包含2个正整数N,M,为图的顶点数与边数。
接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。

输出格式:

输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可。如果无法到达顶点i则输出0。

输入输出样例
输入样例#1:
5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
输出样例#1:
1
1
1
2
4
说明
1到5的最短路有4条,分别为2条1-2-4-5和2条1-3-4-5(由于4-5的边有2条)。
对于20%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 100000,M ≤ 200000。


一道水题,跑一遍spfa(),模拟即可。


#include<iostream>
#include<cstring>
#include<vector>
#include<cstdio>
#include<queue>
using namespace std;
const int mod=100003;
vector<int>v[100005];
queue<int>q;
int n,m,dis[100005],cnt[100005];
bool b[100005];
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        v[x].push_back(y);
        v[y].push_back(x);
    }
    memset(dis,0x3f,sizeof(dis));
    dis[1]=0;
    cnt[1]=1;
    b[1]=1;
    q.push(1);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=0;i<v[u].size();i++)
        {
            if(dis[v[u][i]]>dis[u]+1)
            {
                dis[v[u][i]]=dis[u]+1;
                cnt[v[u][i]]=cnt[u]%mod;
                if(!b[v[u][i]])
                {
                    b[v[u][i]]=1;
                    q.push(v[u][i]);
                }
            }
            else if(dis[v[u][i]]==dis[u]+1)
                cnt[v[u][i]]+=cnt[u],cnt[v[u][i]]%=mod;
        }
        b[u]=0;
    }
    for(int i=1;i<=n;i++)
        printf("%d\n",cnt[i]);
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:77990次
    • 积分:5690
    • 等级:
    • 排名:第4571名
    • 原创:510篇
    • 转载:0篇
    • 译文:0篇
    • 评论:8条
    这里可以qq会话~
    文章分类