[bzoj1084][DP][前缀和]最大子矩阵

原创 2016年08月29日 15:12:03

Description

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵 不能相互重叠。

Input

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

Output

 只有一行为k个子矩阵分值之和最大为多少。

Sample Input

3 2 2

1 -3

2 3

-2 3

Sample Output

9

题解

首先使用前缀和,s[i][1]表示(第一列)1~i的前缀和,s[i][2]表示(第二列)1~i的前缀和。然后DP就行了~具体见代码,写了点注释的……
代码

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int f[110][110][11],s[110][10];
/*s表示的是前缀和,也就是(1,1)~(i,j)分成一个矩阵的值
  f[i][j][k]表示 第一列的(1 to i)行,以及第二列的(1 to j)行,分成k个矩阵
  如m==1 则不需要使用j,直接用f[i][0][k]进行迭代 
*/ 
int main()
{
    freopen("matrix.in","r",stdin);freopen("matrix.out","w",stdout);
    int n,m,kk;
    memset(s,0,sizeof(s));
    scanf("%d%d%d",&n,&m,&kk);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            int x;
            scanf("%d",&x);
            s[i][j]=s[i-1][j]+x;
        }
    memset(f,0,sizeof(f));
    if(m==1)//分两种情况处理
    {
        //只有一个很好处理的= =我就不打了
        for(int i=1;i<=n;i++)
            for(int k=1;k<=kk;k++)
            {
                f[i][0][k]=f[i-1][0][k];
                for(int j=k-1;j<i;j++)
                {
                    f[i][0][k]=max(f[j][0][k-1]+s[i][1]-s[j][1],f[i][0][k]);
                }
            }
        printf("%d\n",f[n][0][kk]);
    }
    else
    {
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                for(int k=1;k<=kk;k++)
                {
                    //首先,我们让f[i][j][k]继承它前面的那个(最大值,也就是i或者j中有一个人不产生贡献)
                    f[i][j][k]=max(f[i-1][j][k],f[i][j-1][k]);
                    //分别继承,把u+1 to i看成一个矩阵(或者u+1 to j)
                    for(int u=0;u<i;u++)f[i][j][k]=max(f[i][j][k],f[u][j][k-1]+s[i][1]-s[u][1]);
                    for(int u=0;u<j;u++)f[i][j][k]=max(f[i][j][k],f[i][u][k-1]+s[j][2]-s[u][2]);
                    //如果相等,我们再来一次
                    if(i==j)for(int u=0;u<i;u++)f[i][j][k]=max(f[i][j][k],f[u][u][k-1]+s[i][1]-s[u][1]+s[i][2]-s[u][2]);
                }
                // 输出
        printf("%d\n",f[n][n][kk]);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

bzoj1084: [SCOI2005]最大子矩阵-DP

现在已经能自然的想到分类讨论了。 注意到m=1或者2,当m=1时,是普通的最大连续字段和,只不过是k个: 设f[i][j]表示前i个数中取出j个矩形的最大和 转移: 选:f[i][j]=max...

BZOJ1084: [SCOI2005]最大子矩阵 DP

1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2301  Solved: 1129 [Su...
  • Oakley_
  • Oakley_
  • 2016年09月07日 11:44
  • 197

【BZOJ1084】[SCOI2005]最大子矩阵【DP】

【题目链接】 终于A了这题了。 m = 1和m = 2两种情况分开做。 对于m = 1,很简单的DP。设dp[k][n]表示前n个数字,分为k段的最大权值。 (1)不取第n个数,d...

【BZOJ1084】【SCOI2005】最大子矩阵 傻动规

题解: 这数据范围,来乱搞吧少年。 我的乱搞: m==1时做一遍,m==2时做一遍。 别讨论少情况就好,m==2时时间复杂度n^3。 代码: #include #include #incl...
  • Vmurder
  • Vmurder
  • 2015年01月20日 08:44
  • 1551

【BZOJ1084】【codevs2454】最大子矩阵,DP

.

bzoj1084 [SCOI2005]最大子矩阵(dp)

因为m

【bzoj1084】【scoi2005】【最大子矩阵】【dp】

Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。 Input 第一行为n,m,k(1≤n≤...

[BZOJ1084][SCOI2005]最大子矩阵(dp)

题目描述传送门题目大意:有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。(1...

bzoj1084(dp)

分了两种情况, m==1时,dp即可,关键是要注意负数的处理,有负数的时候,初始化为0就很可能有bug m==2时,想了一个dp,然而有一种情况没有考虑,codevs数据真是良心,给我留了...

【BZOJ1084 || SCOI2005】最大子矩阵

【Description】 一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。 【Data Range】 1≤n≤100,...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[bzoj1084][DP][前缀和]最大子矩阵
举报原因:
原因补充:

(最多只允许输入30个字)