[bzoj1084][DP][前缀和]最大子矩阵

原创 2016年08月29日 15:12:03

Description

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵 不能相互重叠。

Input

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的分值的绝对值不超过32767)。

Output

 只有一行为k个子矩阵分值之和最大为多少。

Sample Input

3 2 2

1 -3

2 3

-2 3

Sample Output

9

题解

首先使用前缀和,s[i][1]表示(第一列)1~i的前缀和,s[i][2]表示(第二列)1~i的前缀和。然后DP就行了~具体见代码,写了点注释的……
代码

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int f[110][110][11],s[110][10];
/*s表示的是前缀和,也就是(1,1)~(i,j)分成一个矩阵的值
  f[i][j][k]表示 第一列的(1 to i)行,以及第二列的(1 to j)行,分成k个矩阵
  如m==1 则不需要使用j,直接用f[i][0][k]进行迭代 
*/ 
int main()
{
    freopen("matrix.in","r",stdin);freopen("matrix.out","w",stdout);
    int n,m,kk;
    memset(s,0,sizeof(s));
    scanf("%d%d%d",&n,&m,&kk);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
        {
            int x;
            scanf("%d",&x);
            s[i][j]=s[i-1][j]+x;
        }
    memset(f,0,sizeof(f));
    if(m==1)//分两种情况处理
    {
        //只有一个很好处理的= =我就不打了
        for(int i=1;i<=n;i++)
            for(int k=1;k<=kk;k++)
            {
                f[i][0][k]=f[i-1][0][k];
                for(int j=k-1;j<i;j++)
                {
                    f[i][0][k]=max(f[j][0][k-1]+s[i][1]-s[j][1],f[i][0][k]);
                }
            }
        printf("%d\n",f[n][0][kk]);
    }
    else
    {
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                for(int k=1;k<=kk;k++)
                {
                    //首先,我们让f[i][j][k]继承它前面的那个(最大值,也就是i或者j中有一个人不产生贡献)
                    f[i][j][k]=max(f[i-1][j][k],f[i][j-1][k]);
                    //分别继承,把u+1 to i看成一个矩阵(或者u+1 to j)
                    for(int u=0;u<i;u++)f[i][j][k]=max(f[i][j][k],f[u][j][k-1]+s[i][1]-s[u][1]);
                    for(int u=0;u<j;u++)f[i][j][k]=max(f[i][j][k],f[i][u][k-1]+s[j][2]-s[u][2]);
                    //如果相等,我们再来一次
                    if(i==j)for(int u=0;u<i;u++)f[i][j][k]=max(f[i][j][k],f[u][u][k-1]+s[i][1]-s[u][1]+s[i][2]-s[u][2]);
                }
                // 输出
        printf("%d\n",f[n][n][kk]);
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

[BZOJ 1084] SCOI 2005 最大子矩阵 · 简单DP

比较魔性的题目 m 具体转移方程可直接看代码#include #include #include #include using namespace std; #define f(i,x,y)...

bzoj1084: [SCOI2005]最大子矩阵-DP

现在已经能自然的想到分类讨论了。 注意到m=1或者2,当m=1时,是普通的最大连续字段和,只不过是k个: 设f[i][j]表示前i个数中取出j个矩形的最大和 转移: 选:f[i][j]=max...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

bzoj 1084: [SCOI2005]最大子矩阵 (DP)

题目描述传送门题目大意:给出一个n*m的矩阵,请你选出其中至多k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。题解m只有1,2两种,所以分开考虑一下 当m=1时,f[...

【BZOJ 1084】【SCOI 2005】最大子矩阵【DP & 分类讨论】

Description  这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵不能相互重叠。Input  第一行为n,m,k(1≤n≤100,1≤m≤...

bzoj 1084: [SCOI2005]最大子矩阵 题解

【原题】 1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1016  Solved: 518...

BZOJ 1084 SCOI2005 最大子矩阵 动态规划

题目大意:给出一个矩阵,求在这个矩阵中取出k个不重叠的矩阵的最大和。 思路:怎么做? 这个问题困扰我好几天的时间,终于再一次读题: 。。。 。。 。。。 2??!! 这尼...

【bzoj1084】 [SCOI2005]最大子矩阵

1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2715  Solved: 1350 [Submit][S...

bzoj1084【SCOI2005】最大子矩阵

DP

bzoj 1084: [SCOI2005]最大子矩阵

当m=1的时候就是个简单的k个最大子段和就不说了 dp[i][j][k]表示第1列取到前i个数,第2列取到前j个数,共用了k个矩阵所得到的最大值

BZOJ P1084[scoi2005]最大子矩阵

随手翻到了之前做的一道水题,随便写篇题解水一水吧 最大子矩阵,一开始不会,一度以为是神题(划掉) 然后发现m m==1时 直接求序列分成k段的最大和 m==2时 f[i][j][k]表示上...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)