关闭
当前搜索:

【ML学习笔记】20:kNN与分类面绘制

在python3上实现起来挺不适应。代码实现#-*-coding:utf-8-*- from numpy import * #科学计算包 import operator #运算符模块 import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot as plt import operator from mpl_t...
阅读(6) 评论(0)

【MPI学习笔记】4:并行化方阵和向量的乘积(按列分配)

记录一下传文件到服务器上的命令,不然每次都history找很烦: scp -P 5006 /home/lzh/文档/mpi/rate2.c student@hpc.shu.edu.cn:/home/student/15121856/rate2.c 简述 这个和上一篇一样,也是多机上追求速度。按列分配时,我的做法还是每个进程获得自己要处理的那块数据,而省去Scatter的时间。 按列分配...
阅读(8) 评论(0)

【MPI学习笔记】3:快速并行方阵和向量乘积+多机测试

简述 之前使用的是在一台机器上的,内存非常有限,而核心数也不是很多,为了减小机器承受的压力,每运行到某块*alloc出的内存必定不被使用时,就立即free掉,而在多机上,这样的压力分散到了多台机器上。按照这次作业的要求,需要让计算速度尽可能快,这样就应当能不free的尽量不free,能不同步的不做同步,从而快速得到结果,再去free申请来的内存。 程序中还有一些细节,如当j=0时,操作row_...
阅读(11) 评论(0)

【Linux学习笔记】40:配置自己的桌面版CentOS6.9

各种问题,重装了无数次,记录一下最近一次最成功的操作流程。 (虽然第一行就打错了) rmp -ivh jdk-8u11-linux-i586.rpm rpm -ivh jdk-8u11-linux-i586.rpm java -version cd /usr ls cd java ls which java cd /usr/bin cat java ls ll -a java rm...
阅读(28) 评论(0)

【MPI学习笔记】2:并行化方阵和向量的乘积(按行分配)

按照老师所说,可以把矩阵的每一行都存其列号(0~N-1),然后列向量全部设置为1,这样得到的结果列向量一定每一位的值都应当是(N-1+0)*N/2,可以用这种方式检查程序写的对不对。每个进程一次读完自己的任务简述假设机器是共享内存的(如果是分布式内存的,那16台这么大内存的机器能处理的规模是现在的16倍),那么必须为所有进程考虑这点可用的空间,拿N=40000试了一下(死循环扔进后台然后查看内存使用...
阅读(52) 评论(0)

【Java学习笔记】52:MouseEvent事件的处理

简述不止一个接口用于处理MouseEvent事件:如果要处理在任何组件上都可以发生的按住、释放、移入组件、移出组件、单击触发的MouseEvent事件,应让监听器实现MouseListener接口。如果要处理任何组件上都可以发生的拖动鼠标和移动鼠标时候触发的MouseEvent事件,应让监听器实现MouseMotionListener接口。MouseListener接口的例子读取鼠标发生某些事件的位...
阅读(39) 评论(0)

【Java学习笔记】51:FocusEvent,KeyEvent,WindowEvent事件的处理

简述 FocusEvent 当组件获得焦点、失去焦点时,都会触发FocusEvent事件。 组件可以使用requestFocusInWindow()方法获取焦点,可以使用transferFocus()向下一组件传递焦点。 要成为FocusEvent事件的监听器,需要实现FocusListener接口,即实现其中获得焦点时和失去焦点时的处理方法。 KeyEvent 当按住、释放、...
阅读(75) 评论(0)

【Java学习笔记】50:DocumentEvent事件的处理

简述 注意,不是文本区JTextArea能触发DocumentEvent事件,而是文本区的文档,即文本区使用getDocument()方法返回的文本对象,才是DocumentEvent事件的事件源。 一个类作为DocumentEvent事件的监听器类,需要实现DocumentListener接口,需要覆写其中的changedUpdate,removeUpdate和insertUpdate三个抽...
阅读(39) 评论(0)

【MPI学习笔记】1:并行化向量和矩阵的乘积

大致看了看MPI的一些函数,勉强写出这两个程序,这两个程序的效率不高(这个问题很严重),而且对输入的鲁棒性非常不好(可能并行程序不太需要关注这个)。 只是实现了功能,有非常多优化的空间,如果有时间的话再优化吧。 要求一个行向量和一个方阵的乘积,乘积结果也是一个行向量,用MPI编写并行程序。假设子任务数目总是能被进程数均匀划分。 ①方阵按列分配任务 在输入时转置输入,则按列分配就变成了按行分...
阅读(57) 评论(0)

【Java学习笔记】49:ItemEvent事件的处理

简述刚刚的文本框获得焦点时回车和按钮单击,都属于ActionEvent事件,也就是说文本框和按钮可以作为ActionEvent事件的事件源。而选择框的选中,和下拉列表的选中,都是在触发ItemEvent事件。不同类型的事件的监听器要实现的接口不同,对于ActionEvent事件,这个接口是ActionListener,实现其中的actionPerformed方法,方法传入的也是ActionEvent...
阅读(59) 评论(0)

【Java学习笔记】48:盒内组件的支撑和ActionEvent事件处理

还是跟着课本敲代码。 盒内组件的支撑 用添加水平支撑和添加垂直支撑的方式,控制行式盒容器和列式盒容器中组件之间的距离。 Main.java public class Main { public static void main(String[] args) { WindowBoxLayout wbl=new WindowBoxLayout();...
阅读(38) 评论(0)

【Java学习笔记】47:菜单栏,菜单,菜单项,下拉列表,选项卡

对着书上敲。JFrame的内容面板import java.awt.Color; import java.awt.Container;import javax.swing.JFrame;public class exmp1 { public static void main(String[] args) { JFrame jf1=new JFrame("第1个窗口");...
阅读(61) 评论(0)

【知识碎片】4:2018.1.12前(SQL练习,MPI编程)

SQL练习 --在E表中插入记录,把每个学生没学过的课程都插入到E表中 --使得每个学生都选修每门课 USE school; INSERT INTO E(xh,xq,kh,gh) SELECT EXPSET.xh,OK.xq,EXPSET.kh,OK.gh FROM ( SELECT * FROM ( SELECT S0.xh,O0.kh FROM d...
阅读(46) 评论(0)

【python学习笔记】30:非函数形式但可用方程描绘的决策线的寻找和绘制

简述 决策线是2特征时的分类超平面方程,当方程不能表示成y=f(x)或者x=f(y)形式时,不能直接用x或者y方向的单向采样绘制决策线。 zyq给出的做法是,在一个范围内用采样的点(x,y)去激活分类器,得到其类别,从而得到这个范围内各个采样点的类别,将不同类别的点绘制成不同颜色,可以展示出分类面的形状特征。 这种做法的缺陷是,采样范围难以察觉,并且得到的实际上是决策线两侧的点。 可以用p...
阅读(62) 评论(0)

【ML学习笔记】19:原始的LDA线性判别式分析

简述LDALDA线性判别式分析也叫Fisher线性判别,其思路和感知机不同。感知机是根据自己的分类错误去调整决策线的位置,而Fisher线性判别的思想是把空间中的样本点向一个向量上投影,最终在这个向量确定的一维空间中就可以根据点的散布确定阈值,从而做线性判别了。 显然这个投影方向应尽可能让投影后的点类间相隔较远,而类内比较聚集,这样才能较好地分类。原样本空间如样本i的特征向量是xi: 其d个...
阅读(68) 评论(0)

【python学习笔记】29:模拟OPT和LRU算法

LRU之前做过,OPT 最佳淘汰算法是一种理想状态的算法,是去寻找后面没有使用,或者最晚使用的那个cache中的页面淘汰掉。急着回去睡觉,不废话了。代码实现#-*-coding:utf-8-*- from numpy import *#一行四个输出 def MyPrint(lst,strlst): i=0 for j in range(len(lst)): print...
阅读(59) 评论(1)

【ML学习笔记】18:原始的Perceptron(感知机)

感知机的决策面 感知机用来获取样本特征空间中的一个超平面,以对样本进行分类,属于线性分类器。 这样的分类问题比较经典,如某一个参加非诚入扰的女士(分类器)评判自己会不会给非诚勿扰的各个男嘉宾(样本)留灯(1或者-1),男嘉宾作为样本,有多个特征,如身高、月收入、长相得分等。 女嘉宾的内心对这些特征会有一个权重,她想的是:把这些特征乘以权重(当然对某些特征的权重是负的,比如每周抽烟的数目)加起...
阅读(57) 评论(0)

【ML学习笔记】17:多元正态分布下极大似然估计最小错误率贝叶斯决策

简述多元正态分布下的最小错误率贝叶斯如果特征的值向量服从d元正态分布,即其概率密度函数为: 即其分布可以由均值向量和对称的协方差矩阵 唯一确定。如果认为样本的特征向量在类内服从多元正态分布: 即对于每个类i,具有各自的类内的均值向量和协方差矩阵。如之前所学,最小错误率贝叶斯的判别函数的原始形式是: 类条件概率密度服从多元正态分布,带入,得: 因为是比较大小用的,去掉与类号i无关...
阅读(134) 评论(0)

【ML学习笔记】16:单变量极大似然估计+最小错误率贝叶斯决策

简述极大似然估计在前面做的朴素贝叶斯做文档分类问题中,因为文档中的词(每个特征)不过是出现(1)和不出现(0)两种情况。不管使用词集模型还是词袋模型,对于一个词(特征)而言,其类条件概率只需要用训练集的那一类中出现总的次数,除以训练集中那一类的词的总数目即可。但是当特征取更多的值甚至是连续的值时,这种方法显得不管用,对于特征取连续的值,类条件概率其实是类条件概率密度函数,只能尝试去估计这个函数。极大...
阅读(89) 评论(0)

【知识碎片】3:2017.12.31前(SELECT查询练习,硬件与并行)

--检索有学生重修的教师编号和姓名 USE school; SELECT DISTINCT T1.gh AS '教师工号',T1.xm AS '教师姓名' FROM dbo.T AS T1 RIGHT JOIN dbo.E AS E1 ON T1.gh=E1.gh WHERE EXISTS ( SELEC...
阅读(85) 评论(1)
250条 共13页1 2 3 4 5 ... 下一页 尾页