bzoj4551 [Tjoi2016&Heoi2016]树

传送门
Description

在2016年,佳媛姐姐刚刚学习了树,非常开心。现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均无标记,而且对于某个结点,可以打多次标记。)2. 询问操作:询问某个结点最近的一个打了标记的祖先(这个结点本身也算自己的祖先)你能帮帮他吗?
Input

输入第一行两个正整数N和Q分别表示节点个数和操作次数接下来N-1行,每行两个正整数u,v(1≤u,v≤n)表示u到v有一条有向边接下来Q行,形如“opernum”oper为“C”时表示这是一个标记操作,oper为“Q”时表示这是一个询问操作对于每次询问操作,1 ≤ N, Q ≤ 100000。
Output

输出一个正整数,表示结果

Sample Input

5 5

1 2

1 3

2 4

2 5

Q 2

C 2

Q 2

Q 5

Q 3
Sample Output

1

2

2

1
HINT

新加数据9组(By HFLSyzx ),未重测–2016.8.2

题解

这道题可以用树链剖分做,然而我的方法非常愚蠢,速度排到了bzoj倒数第5QAAAQ
就当练习一次好了

看了别人的题解,感觉自己辣鸡到爆
正常的做法:线段树存储离该点最近的标记过的祖先节点,直接查询,取最优解
zz的做法:线段树存储该点管辖范围中有无标记过的节点,查询时进行各种沙茶特判,自带大常数

自己又重新写了一遍,速度快了不少
新写的代码中Add函数的最后更新当前点的时候并没有取max,而是优先使用右儿子的数据,这是因为在树链剖分得到的dfs序中,同一条链是连续的,所以更深的节点应当在右侧;如果一个节点的左右儿子不是同一条链上的也没有关系,因为我们在查询的时候根本就用不到这样的节点上的数据。

QAQ::codecmp(辣鸡的代码,优良的代码):

这里写图片描述

辣鸡的代码:

#include<cstdio>
const int INF=1e9;
const int N=1e5+10;
struct edge
{
    int nxt,to;
}a[N<<1];
bool t[N<<2];
int head[N],deep[N],f[N],sz[N],son[N],top[N],pos[N],id[N];
int n,q,x,y,num,tot;
inline int max(int a,int b){return a>b?a:b;}
inline int min(int a,int b){return a<b?a:b;}
inline void add(int x,int y)
{
    a[++num].nxt=head[x],a[num].to=y,head[x]=num;
    a[++num].nxt=head[y],a[num].to=x,head[y]=num;
}
void dfs(int now,int fa,int depth)
{
    deep[now]=depth;
    f[now]=fa;
    sz[now]=1;
    int tmp=-INF;
    for(int i=head[now];i;i=a[i].nxt)
      if(a[i].to!=fa)
      {
        dfs(a[i].to,now,depth+1);
        sz[now]+=sz[a[i].to];
        if(sz[a[i].to]>tmp) tmp=sz[a[i].to],son[now]=a[i].to;
      }
}
void dfs2(int now,int high)
{
    top[now]=high;
    pos[now]=++tot;
    id[tot]=now;
    if(son[now]) dfs2(son[now],high);
    for(int i=head[now];i;i=a[i].nxt)
      if(a[i].to!=f[now]&&a[i].to!=son[now]) dfs2(a[i].to,a[i].to);
}
void Add(int p,int l,int r,int now)
{
    if(l==r)
    {
        t[now]=1;
        return;
    }
    int mid=(l+r)>>1;
    if(p<=mid) Add(p,l,mid,now<<1);
    else Add(p,mid+1,r,now<<1|1);
    t[now]=1;
}
bool Ask(int L,int R,int l,int r,int now)
{
    if(L<=l&&r<=R) return t[now];
    int mid=(l+r)>>1;
    if(L<=mid&&Ask(L,R,l,mid,now<<1)) return 1;
    if(R>mid&&Ask(L,R,mid+1,r,now<<1|1)) return 1;
    return 0;
}
int ask(int p,int wh,int l,int r,int now)
{
    if(l==r) return id[l];
    int mid=(l+r)>>1;
    if(!wh)
    {
        if(p>mid&&Ask(mid+1,p,1,n,1)) return ask(p,wh,mid+1,r,now<<1|1);
        else return ask(p,wh,l,mid,now<<1);
    }
    if(p<=mid&&Ask(p,mid,1,n,1)) return ask(p,wh,l,mid,now<<1);
    return ask(p,wh,mid+1,r,now<<1|1);
}
int askpath(int x)
{
    int L,R;
    L=min(pos[x],pos[top[x]]);
    R=max(pos[x],pos[top[x]]);
    while(!Ask(L,R,1,n,1))
    {
        x=f[top[x]];
        L=min(pos[x],pos[top[x]]);
        R=max(pos[x],pos[top[x]]);
    }
    if(pos[x]<=pos[top[x]]) return ask(pos[x],1,1,n,1);
    return ask(pos[x],0,1,n,1);
}
int main()
{
    scanf("%d%d",&n,&q);
    for(int i=1;i<n;i++)
      scanf("%d%d",&x,&y),add(x,y);
    dfs(1,0,1);
    dfs2(1,1);
    Add(1,1,n,1);
    while(q--)
    {
        char c=getchar();
        while(c!='Q'&&c!='C') c=getchar();
        scanf("%d",&x);
        if(c=='Q') printf("%d\n",askpath(x));
        else Add(pos[x],1,n,1);
    }
    return 0;
}

优良的代码:

#include<cstdio>
const int INF=1e9;
const int N=1e5+10;
struct edge
{
    int nxt,to;
}a[N<<1];
int t[N<<2];
int head[N],sz[N],pos[N],top[N],f[N],son[N],deep[N];
int n,q,x,y,num,tot;
inline void add(int x,int y)
{
    a[++num].nxt=head[x],a[num].to=y,head[x]=num;
    a[++num].nxt=head[y],a[num].to=x,head[y]=num;
}
void dfs(int now)
{
    sz[now]=1;
    for(int i=head[now];i;i=a[i].nxt)
      if(a[i].to!=f[now])
      {
        f[a[i].to]=now;
        deep[a[i].to]=deep[now]+1;
        dfs(a[i].to);
        sz[now]+=sz[a[i].to];
        if(sz[a[i].to]>sz[son[now]]) son[now]=a[i].to;
      }
}
void dfs2(int now)
{
    pos[now]=++tot;
    if(son[now]) top[son[now]]=top[now],dfs2(son[now]);
    for(int i=head[now];i;i=a[i].nxt)
      if(a[i].to!=f[now]&&a[i].to!=son[now]) top[a[i].to]=a[i].to,dfs2(a[i].to);
}
void Add(int p,int l,int r,int now,int num)
{
    if(l==r)
    {
        t[now]=num;
        return;
    }
    int mid=(l+r)>>1;
    if(p<=mid) Add(p,l,mid,now<<1,num);
    else Add(p,mid+1,r,now<<1|1,num);
    t[now]=t[now<<1|1]?t[now<<1|1]:t[now<<1];
}
int ask(int L,int R,int l,int r,int now)
{
    if(L<=l&&r<=R) return t[now];
    int mid=(l+r)>>1,ans=0,tmp;
    if(L<=mid)
    {
        tmp=ask(L,R,l,mid,now<<1);
        if(deep[ans]<deep[tmp]) ans=tmp;
    }
    if(R>mid)
    {
        tmp=ask(L,R,mid+1,r,now<<1|1);
        if(deep[ans]<deep[tmp]) ans=tmp;
    }
    return ans;
}
inline int askpath(int x)
{
    int L=pos[top[x]],R=pos[x],ans;
    while(!(ans=ask(L,R,1,n,1)))
    {
        x=f[top[x]];
        L=pos[top[x]];
        R=pos[x];
    }
    return ans;
}
int main()
{
    scanf("%d%d",&n,&q);
    for(int i=1;i<n;i++)
      scanf("%d%d",&x,&y),add(x,y);
    deep[1]=1;dfs(1);
    top[1]=1;dfs2(1);
    Add(1,1,n,1,1);
    while(q--)
    {
        char c=getchar();
        while(c!='Q'&&c!='C') c=getchar();
        scanf("%d",&x);
        if(c=='Q') printf("%d\n",askpath(x));
        else Add(pos[x],1,n,1,x);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值