1月2日 MyBatis联动查询+Prim算法

原创 2017年01月03日 23:01:36

MyBatis联动查询:

一对一映射(注解版):

 /**
     * @Interface:CompanyMapper
     */
    @Select({
        "select",
        "cid, name, address, pro, city, price",
        "from company",
        "where cid = #{cid,jdbcType=INTEGER}"
    })
    @Results({
        @Result(column="cid", property="cid", jdbcType=JdbcType.INTEGER, id=true),
        @Result(column="name", property="name", jdbcType=JdbcType.VARCHAR),
        @Result(column="address", property="address", jdbcType=JdbcType.VARCHAR),
        @Result(column="pro", property="pro", jdbcType=JdbcType.VARCHAR),
        @Result(column="city", property="city", jdbcType=JdbcType.VARCHAR),
        @Result(column="price", property="price", jdbcType=JdbcType.INTEGER)
    })
    Company selectComByPrimaryKey(Integer cid);

/**
     * @Interface:EmpMapper
     */
    @Select({
            "select",
            "eid, name, sex, email, salary, cid",
            "from emp",
            "where eid = #{eid,jdbcType=INTEGER}"
    })
    @Results({
            @Result(column="eid", property="eid", jdbcType=JdbcType.INTEGER, id=true),
            @Result(column="name", property="name", jdbcType=JdbcType.VARCHAR),
            @Result(column="sex", property="sex", jdbcType=JdbcType.VARCHAR),
            @Result(column="email", property="email", jdbcType=JdbcType.VARCHAR),
            @Result(column="salary", property="salary", jdbcType=JdbcType.INTEGER),
            @Result(column="cid", property="cid", jdbcType=JdbcType.INTEGER),
            @Result(column="cid",property="company",one = @One(select = "com.MyBatis.mapper.CompanyMapper.selectComByPrimaryKey"))
    })
    Emp selectComByEid(Integer eid);
一对多映射(注解版)

/**
     * @Interface:CompanyMapper
     */
    @Select({
            "select",
            "cid, name, address, pro, city, price",
            "from company",
            "where cid = #{cid,jdbcType=INTEGER}"
    })
    @Results({
            @Result(column="cid", property="cid", jdbcType=JdbcType.INTEGER, id=true),
            @Result(column="name", property="name", jdbcType=JdbcType.VARCHAR),
            @Result(column="address", property="address", jdbcType=JdbcType.VARCHAR),
            @Result(column="pro", property="pro", jdbcType=JdbcType.VARCHAR),
            @Result(column="city", property="city", jdbcType=JdbcType.VARCHAR),
            @Result(column="price", property="price", jdbcType=JdbcType.INTEGER),
            @Result(property = "elist",javaType = List.class,column = "cid",
                    many = @Many(select = "com.MyBatis.mapper.EmpMapper.selectEmpByCid"))
    })
    Company selectEmpByPrimaryKey(Integer cid);

 /**
     * @Interface:EmpMapper
     */
    @Select({
        "select",
        "eid, name, sex, email, salary, cid",
        "from emp",
        "where cid = #{cid,jdbcType=INTEGER}"
    })
    @Results({
        @Result(column="eid", property="eid", jdbcType=JdbcType.INTEGER, id=true),
        @Result(column="name", property="name", jdbcType=JdbcType.VARCHAR),
        @Result(column="sex", property="sex", jdbcType=JdbcType.VARCHAR),
        @Result(column="email", property="email", jdbcType=JdbcType.VARCHAR),
        @Result(column="salary", property="salary", jdbcType=JdbcType.INTEGER),
        @Result(column="cid", property="cid", jdbcType=JdbcType.INTEGER)
    })
    List <Emp> selectEmpByCid(Integer cid);

Prim算法:

1.概览

普里姆算法Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点英语Vertex (graph theory),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克英语Vojtěch Jarník发现;并在1957年由美国计算机科学家罗伯特·普里姆英语Robert C. Prim独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

2.算法简单描述

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

下面对算法的图例描述

图例 说明 不可选 可选 已选(Vnew
 

此为原始的加权连通图。每条边一侧的数字代表其权值。 - - -

顶点D被任意选为起始点。顶点ABEF通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 C, G A, B, E, F D
 

下一个顶点为距离DA最近的顶点。BD为9,距A为7,E为15,F为6。因此,FDA最近,因此将顶点F与相应边DF以高亮表示。 C, G B, E, F A, D
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 C B, E, G A, D, F
 

在当前情况下,可以在CEG间进行选择。CB为8,EB为7,GF为11。E最近,因此将顶点E与相应边BE高亮表示。 C, E, G A, D, F, B
 

这里,可供选择的顶点只有CGCE为5,GE为9,故选取C,并与边EC一同高亮表示。 C, G A, D, F, B, E

顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG G A, D, F, B, E, C

现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 A, D, F, B, E, C, G

 3.简单证明prim算法

反证法:假设prim生成的不是最小生成树

1).设prim生成的树为G0

2).假设存在Gmin使得cost(Gmin)<cost(G0)   则在Gmin中存在<u,v>不属于G0

3).将<u,v>加入G0中可得一个环,且<u,v>不是该环的最长边(这是因为<u,v>∈Gmin)

4).这与prim每次生成最短边矛盾

5).故假设不成立,命题得证.

 4.算法代码实现

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

const int Maxn = 505;
const int Inf = 1 << 9;
int vis[Maxn];
int dis[Maxn];
int map[Maxn][Maxn];
int n;

void init()
{
    for(int i=0;i<n;i++)
    {
        vis[i] = 0;
        dis[i] = map[0][i];
    }
}

int Prim()
{
    init();
    int ans = 0;
    dis[0] = 0;
    vis[0] = 1;
    for(int i=0;i<n-1;i++)
    {
        int temp = Inf;
        int flag = 0;
        for(int j=0;j<n;j++)
        {
            if(!vis[j] && dis[j] < temp)
            {
                temp = dis[j];
                flag = j;
            }
        }
        vis[flag] = 1;
        ans += temp;
        for(int j=0;j<n;j++)
        {
            if(!vis[j] && map[flag][j] < dis[j])
            {
                dis[j] = map[flag][j];
            }
        }
    }
    return ans;
}

int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                scanf("%d",&map[i][j]);
            }
        }
        int ans = Prim();
        printf("%d\n",ans);
    }
    return 0;
}

5.时间复杂度

这里记顶点数v,边数e

邻接矩阵:O(v2)          邻接表:O(elog2v)



版权声明:本文为博主原创文章,未经博主允许不得转载。

mybatis特性--- 级联查询

我么都知道Hibernate的关联对象查询、级联删除、级联保存等特性,那么iBATIS是否提供同样的功能呢?这是大部分人会关心的内容。       答案也许是另人失望的。iBATIS可以关联查询,却没...
  • szq648477620
  • szq648477620
  • 2015年06月09日 10:10
  • 687

类似省市联动的查询功能实现

实现思路 : 由于”省市”一般是一对多(主外键)关系 , 所以当你要通过下拉框选中一级菜单 – 省 , 出现对应”市”的时候 , 首先要把所有的”省”从数据库中取出来 , 然后通过”省”的外键 id ...
  • JacXuan
  • JacXuan
  • 2017年04月06日 19:56
  • 28771

最小生成树Prim与Kruskal算法的比较

最小生成树是图论问题中很基本的一个操作。常用的算法有Prim和Kruskal两种算法。本文对这两种算法稍作区别与讨论。Prim算法是依赖于点的算法。它的基本原理是从当前点寻找一个离自己(集合)最近的点...
  • Mollnn
  • Mollnn
  • 2016年09月19日 21:48
  • 3482

Prim算法介绍与实现

普里姆(Prim)算法
  • u012904198
  • u012904198
  • 2014年04月15日 11:58
  • 1704

Prim算法和Kruskal算法

Prim算法和Kruskal算法都能从连通图找出最小生成树。区别在于Prim算法是挨个找,而Kruskal是先排序再找。       一、Prim算法:     Prim算法实现的是找出一个...
  • believejava
  • believejava
  • 2013年12月19日 13:21
  • 19274

prim算法的java实现

MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一...
  • u014507083
  • u014507083
  • 2017年05月05日 09:51
  • 644

MIT算法导论-第12讲-最小生成树-Prim算法

问题定义输入:无向图G=(V,E),每条边有一个权重,另假设所有权值是不同的输出:一棵生成树,连接了所有顶点,权重总和最小。分析过程(http://www.cnblogs.com/numbersix/...
  • qing0706
  • qing0706
  • 2016年01月15日 22:02
  • 931

Dijkstra算法与Prim算法的异同

Dijkstra算法,Prim算法,数据结构,代码,时间复杂度,图论
  • qq284565035
  • qq284565035
  • 2016年06月04日 10:51
  • 2750

最小生成树Prim算法 堆优化

对于最小生成树prim算法中,我们每次要扫描一遍邻接表才能找到最小的边的点,但是如果利用堆这种数据结构来进行优化,我们可以大大减小这种查找的时间消耗 我们利用邻接表和小根堆来进行优化,下面是代码解析...
  • ltyqljhwcm
  • ltyqljhwcm
  • 2016年03月19日 14:02
  • 953

最小生成树Prim算法理解

MST(Minimum Spanning Tree,最小生成树)
  • yeruby
  • yeruby
  • 2014年08月16日 18:49
  • 85041
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:1月2日 MyBatis联动查询+Prim算法
举报原因:
原因补充:

(最多只允许输入30个字)