『数据挖掘』scikit-learn包的进阶学习笔记——第二章:线性回归

原创 2016年05月30日 18:56:04

代码部分参考:2-linear-regression

# coding:utf-8
__author__ = "LCG22_2016_05_30"

import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

# font = FontProperties(fname=r"C:\Users\LCG22\Desktop\work\learn\Python\PythonLearn\DataSet\learn_data_set\pizza.xlsx", size=10)
# print font

def runplt():
    plt.figure()
    # plt.title("匹萨价格与直径数据", fontproperties=font)
    # plt.xlabel("直径(英寸)", fontproperties=font)
    # plt.ylabel("价格(美元)", fontproperties=font)
    plt.title("1")
    plt.xlabel("2")
    plt.ylabel("3")
    plt.axis([0, 25, 0, 25])
    plt.grid(True)
    return plt
plt = runplt()
x = [[6], [8], [10], [14], [18]]
y = [[7], [9], [13], [17.5], [18]]
plt.plot(x, y, "k.")
#plt.show()

from sklearn.linear_model import LinearRegression

# 创建并拟合模型
model = LinearRegression()
model.fit(x, y)
print ("预测一张12英寸匹萨价格:$%.2f" % model.predict([12])[0])

plt = runplt()
plt.plot(x, y, "k.")
x2 = [[0], [10], [14], [25]]
model = LinearRegression()
model.fit(x, y)
y2 = model.predict(x2)
plt.plot(x, y, "k.")
plt.plot(x2, y2, "g-")

# 残差预测值
yr = model.predict(x)
for idx, x_value in enumerate(x):
    plt.plot([x_value, x_value], [y[idx], yr[idx]], "r-")

#plt.show()

import numpy as np
print "残差平方和: %.2f" % np.mean((model.predict(x) - y) ** 2)


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

ML:Scikit-Learn 学习笔记(4) --- Linear Regression 线性回归

前语之前写过三篇和Scikit-Learn相关的内容,现在回来填坑了~~ 不过和之前是主要翻译官方文档的工作不同的是,从这次开始,会更加像一个技术手札,而不是翻译了:之前主要说了一个最简单的聚类方式...
  • MebiuW
  • MebiuW
  • 2016-09-01 14:37
  • 1464

机器学习精简教程之二——用scikit-learn求解一元线性回归问题

本文转自 http://www.shareditor.com/blogshow/?blogId=53 一元线性回归是最简单的一种模型,但应用广泛,比如简单地预测商品价格、成本评估等,都可以用...

scikit-learn的线性回归模型 利用pandas处理数据

内容概要 如何使用pandas读入数据如何使用seaborn进行数据的可视化scikit-learn的线性回归模型和使用方法线性回归模型的评估测度特征选择的方法 ...

『数据挖掘』scikit-learn包的初级学习

代码来源:【机器学习实验】scikit-learn的主要模块和基本使用 # coding:utf-8 # creat_time = "2016-05-26" # 加载数据(Data Loading)...

[机器学习]Scikit-Learn模块学习笔记——数据集模块datasets

原文:http://www.cnblogs.com/zhuyuanhao/p/5383628.html“>Scikit-Learn模块学习笔记——数据集模块datasets

Scikit-Learn模块学习笔记——数据集模块datasets

转自他人博客 scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类: datasets.load_*():获取小规模数据集。数据包含在 dataset...

scikit-learn学习笔记:1.1 广义线性模型-普通的最小二乘(Ordinary Least Squares)

scikit-learn学习笔记:1.1 广义线性模型-普通的最小二乘(Ordinary Least Squares)

scikit-learn学习笔记(三)Generalized Linear Models ( 广义线性模型 )

Generalized Linear Models ( 广义线性模型 ) 以下是一组用于回归的方法,其中目标值预期是输入变量的线性组合。在数学概念中,如果  是预测值。 在整个模块中,我们指定向量 ...

尝试向分析类转型1--scikit-learn(机器学习) 和 Weka(数据挖掘)

前段时间的那个微博爬虫一直爬着。。 现在库里有20w id 和 10 w 转发微博  10w 原创微博 这个项目算是失败了,因为效率太低了,微博更新那么快,爬虫速度又那么慢。。。 所以根本来不及拿...

scikit-learn : 线性回归模型性能评估

背景在这个主题中,我们将介绍回归模型拟合数据的效果。每当用线性模型拟合数据做完之后,我们应该问的第一个问题就是“拟合的效果如何?”本主题将回答这个问题。线性模型我们还用上一主题里的lr对象和bosto...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)