『数据挖掘』scikit-learn包的进阶学习笔记——第二章:线性回归

原创 2016年05月30日 18:56:04

代码部分参考:2-linear-regression

# coding:utf-8
__author__ = "LCG22_2016_05_30"

import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

# font = FontProperties(fname=r"C:\Users\LCG22\Desktop\work\learn\Python\PythonLearn\DataSet\learn_data_set\pizza.xlsx", size=10)
# print font

def runplt():
    plt.figure()
    # plt.title("匹萨价格与直径数据", fontproperties=font)
    # plt.xlabel("直径(英寸)", fontproperties=font)
    # plt.ylabel("价格(美元)", fontproperties=font)
    plt.title("1")
    plt.xlabel("2")
    plt.ylabel("3")
    plt.axis([0, 25, 0, 25])
    plt.grid(True)
    return plt
plt = runplt()
x = [[6], [8], [10], [14], [18]]
y = [[7], [9], [13], [17.5], [18]]
plt.plot(x, y, "k.")
#plt.show()

from sklearn.linear_model import LinearRegression

# 创建并拟合模型
model = LinearRegression()
model.fit(x, y)
print ("预测一张12英寸匹萨价格:$%.2f" % model.predict([12])[0])

plt = runplt()
plt.plot(x, y, "k.")
x2 = [[0], [10], [14], [25]]
model = LinearRegression()
model.fit(x, y)
y2 = model.predict(x2)
plt.plot(x, y, "k.")
plt.plot(x2, y2, "g-")

# 残差预测值
yr = model.predict(x)
for idx, x_value in enumerate(x):
    plt.plot([x_value, x_value], [y[idx], yr[idx]], "r-")

#plt.show()

import numpy as np
print "残差平方和: %.2f" % np.mean((model.predict(x) - y) ** 2)


版权声明:本文为博主原创文章,未经博主允许不得转载。

ML:Scikit-Learn 学习笔记(4) --- Linear Regression 线性回归

前语之前写过三篇和Scikit-Learn相关的内容,现在回来填坑了~~ 不过和之前是主要翻译官方文档的工作不同的是,从这次开始,会更加像一个技术手札,而不是翻译了:之前主要说了一个最简单的聚类方式...
  • MebiuW
  • MebiuW
  • 2016年09月01日 14:37
  • 1898

机器学习精简教程之二——用scikit-learn求解一元线性回归问题

本文转自 http://www.shareditor.com/blogshow/?blogId=53 一元线性回归是最简单的一种模型,但应用广泛,比如简单地预测商品价格、成本评估等,都可以用...

scikit-learn的线性回归模型 利用pandas处理数据

内容概要 如何使用pandas读入数据如何使用seaborn进行数据的可视化scikit-learn的线性回归模型和使用方法线性回归模型的评估测度特征选择的方法 ...
  • shulixu
  • shulixu
  • 2016年03月18日 16:54
  • 2981

机器学习之线性回归 Linear Regression(三)scikit-learn算法库

参考http://www.cnblogs.com/pinard/p/6026343.html         scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分...

『数据挖掘』scikit-learn包的初级学习

代码来源:【机器学习实验】scikit-learn的主要模块和基本使用 # coding:utf-8 # creat_time = "2016-05-26" # 加载数据(Data Loading)...
  • Sbtgmz
  • Sbtgmz
  • 2016年05月26日 23:27
  • 776

[通过scikit-learn掌握机器学习] 02 线性回归

本章介绍用线性模型处理回归问题。回归问题的目标是预测出响应变量的连续值。 同时讲一下如何做模型评估。 最后稍微提了一下正则化,即对抗过度拟合的方法。...

【机器学习一】五种线性回归原理以及代码实现(python基于SCIKIT-LEARN库)

1.模型介绍 回归方程 矩阵表示:=Xw 平方误差可以写做: 2.类型 2.1普通线性回归(最小二乘法约束)    Normal Equation算...

Scikit-Learn模块学习笔记——数据集模块datasets

转自他人博客 scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类: datasets.load_*():获取小规模数据集。数据包含在 dataset...

[机器学习]Scikit-Learn模块学习笔记——数据集模块datasets

原文:http://www.cnblogs.com/zhuyuanhao/p/5383628.html“>Scikit-Learn模块学习笔记——数据集模块datasets ...

scikit-learn学习笔记(三)Generalized Linear Models ( 广义线性模型 )

Generalized Linear Models ( 广义线性模型 ) 以下是一组用于回归的方法,其中目标值预期是输入变量的线性组合。在数学概念中,如果  是预测值。 在整个模块中,我们指定向量 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:『数据挖掘』scikit-learn包的进阶学习笔记——第二章:线性回归
举报原因:
原因补充:

(最多只允许输入30个字)