[置顶] Deep Learning 资料库

一、文章来由网络好文章太多,而做一个通过转载文章做资料库太麻烦,所以直接更新这个博文。二、汇总(1)深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning http://blog.csdn.net/xbinworld/article/details/45619685...
阅读(44) 评论(0)

[置顶] Deep Learning 学习笔记

一、文章来由好久没写原创博客了,一直处于学习新知识的阶段。来新加坡也有一个星期,搞定签证、入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不对的地方,欢迎批评指正。二、《一天搞懂深度学习》300多页的PPT,台大教授写的好文章。 对应的视频地址1、Lecture I: Introduction of Deep Learning(1)mach...
阅读(72) 评论(0)

[置顶] 要怎样努力,才能成为很厉害的人?

博主是一个热血青年吧,一直信奉的也是一切杀不死我的,只会令我更坚强~~最近做出了一个看似很疯狂,但是完全足以改变一生的决定。闲余时间逛知乎,看了一个很有共鸣的答案。也许有些人觉得有些决定很疯狂不能实现,我只想说那是你太现实而无法实现梦想找的借口。转自:https://www.zhihu.com/question/22921426「怎样才是很厉害的人?」「自然是 有好看的身材以及容颜 被很多人喜欢 ...
阅读(699) 评论(7)

[置顶] 感悟随笔

一、限制一件事情能否完成,第一是你的耐心,第二是你的寿命。如果这两个都能付出,那没什么事情不能完成的。...
阅读(1152) 评论(2)

[置顶] Java基础总结(内部版)

Java基础总结  琥魄 浏览 4 2016-07-28 10:45:38 发表于: 网商银行技术博客 >> Java技术 编辑 删除 Java核心技术Java   修改标签   标签历史 哈哈,内部博客排版明显好看很多,CSDN要加油啦~~~自己转自己的,留个纪念 实习期间整理~~希望对大家能有帮助 一、JVM 1、内存模型 1.1.1...
阅读(1900) 评论(4)

[置顶] 《TCP/IP卷》读书笔记

本书所有测试网络例子1、TCP/IP的分层在图1 - 2的右边,我们注意到应用程序通常是一个用户进程,而下三层则一般在(操作系 统)内核中执行。尽管这不是必需的,但通常都是这样处理的,例如 U N I X操作系统。在图1 - 2中,顶层与下三层之间还有另一个关键的不同之处。应用层关心的是应用程序的 细节,而不是数据在网络中的传输活动。下三层对应用程序一无所知,但它们要处理所有的 通信细节。2、...
阅读(1297) 评论(0)

[置顶] Java基础总结

一、JVM1、内存模型1.1.1 内存分几部分(1)程序计数器可看作当前线程所执行的字节码的行号指示器。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。在线程创建时创建。执行本地方法时,PC的值为null。为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,线程私有。(2)...
阅读(1672) 评论(3)

[置顶] Java超级大火锅

实习换语言到Java,基础很多需要整理,专门为Java开一个大火锅~~1、事务 事务指的是逻辑上的一组操作,这组操作要么全部成功,要么全部失败。 事务的4大特性:ACID,指数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。详见:http://blog.csdn.net/sc...
阅读(2883) 评论(2)

[置顶] C/C++超级大火锅

写在前面最近接触到一些基础知识,平时遇到的编程困惑也加入其中。准确说是写给自己看的,但是如果大家可以借鉴就更好。多数是c/c++,也有少量java基础和其他知识,貌似应该叫《计算机基础问题汇总》比较好。不断更新~~一、new 跟 malloc 的区别是什么?1.malloc/free是C/C++语言的标准库函数,new/delete是C++的运算符2.new能够自动分配空间大小3.对于用户自定义的对...
阅读(2608) 评论(3)

[置顶] 楼天城楼教主的acm心路历程(作为励志用)

转载的文章,好好加油!说不定什么时候我也可以说:“这题我虽然不会,但是AC还是可以的”。。。 利用假期空闲之时,将这几年GCJ,ACM,TopCoder 参加的一些重要比赛作个 回顾。昨天是GCJ2006 的回忆,今天时间上更早一些吧,我现在还清晰记得3 年 前,我刚刚参加ACM 时参加北京赛区2005 和杭州赛区2005 的情况。 2005 年ACM-ICPC——酸甜苦辣...
阅读(3362) 评论(0)

【286页干货】一天搞懂深度学习(台湾资料科学年会课程)

1新智元编译1来源:Linkedin译者:胡祥杰【新智元导读】本文是2016 台湾资料科学年会前导课程“一天搞懂深度学习”的全部讲义PPT(共268页),由台湾大学电机工程学助理教授李宏毅主讲。作者在文中分四个部分对神经网络的原理、目前存在形态以及未来的发展进行了介绍。深度学习的每一个核心概念在文中都有相关案例进行呈现,通俗易懂。一天的时间搞懂深度学习?其实并不是没有可能。关注新智元,在公众号后台...
阅读(54) 评论(0)

监督学习、无监督学习、半监督学习、强化学习

图:pixabay「机器人圈」导览:一般说来,训练深度学习网络的方式主要有四种:监督、无监督、半监督和强化学习。在接下来的文章中,机器人圈将逐个解释这些方法背后所蕴含的理论知识。除此之外,机器人圈将分享文献中经常碰到的术语,并提供与数学相关的更多资源。本文编译自硅谷著名的风险投资机构安德森•霍洛维茨基金,作者是Frank Chen。有关数学相关问题,请参阅这个斯坦福大学的教程,其中包含监督和无监督...
阅读(25) 评论(0)

Deep Reinforcement Learning 基础知识(DQN方面)

Introduction深度增强学习Deep Reinforcement Learning是将深度学习与增强学习结合起来从而实现从Perception感知到Action动作的端对端学习的一种全新的算法。简单的说,就是和人类一样,输入感知信息比如视觉,然后通过深度神经网络,直接输出动作,中间没有hand-crafted工作。深度增强学习具备使机器人实现完全自主的学习一种甚至多种技能的潜力。虽然将深度...
阅读(18) 评论(0)

浅谈深度学习中的激活函数 - The Activation Function in Deep Learning

原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载。激活函数的作用首先,激活函数不是真的要去激活什么。在神经网络中,激活函数的作用是能够给神经网络加入一些非线性因素,使得神经网络可以更好地解决较为复杂的问题。比如在下面的这个问题中:如上图(图片来源),在最简单的情况下,数据是线性可分的,只需要一条直...
阅读(30) 评论(0)

神经网络中的激活函数

最近在看深度学习的东西,激活函数是其中的一个环节,就从网上的一搜寻关于激活函数的介绍激活函数是用来加入非线性因素的,因为线性模型的表达能力不够。常用激活函数        激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。(1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold F...
阅读(11) 评论(0)

Softmax 函数的特点和作用

----------因为这里不太方便编辑公式,所以很多公式推导的细节都已经略去了,如果对相关数学表述感兴趣的话,请戳这里的链接Softmax的理解与应用 - superCally的专栏 - 博客频道 - http://CSDN.NET") 0px 2px / cover;">----------Softmax在机器学习中有非常广泛的应用,但是刚刚接触机器学习的人可能对Softmax的特点以及好处并...
阅读(33) 评论(0)

深度学习中的激活函数

深度学习大讲堂致力于推送人工智能,深度学习方面的最新技术,产品以及活动。请关注我们的知乎专栏!摘要近年来,深度学习在计算机视觉领域取得了引人注目的成果,其中一个重要因素是激活函数的发展。新型激活函数ReLU克服了梯度消失,使得深度网络的直接监督式训练成为可能。本文将对激活函数的历史和近期进展进行总结和概括。激活函数的定义与作用在人工神经网络中,神经元节点的激活函数定义了对神经元输出的映射,简单来说...
阅读(33) 评论(0)

大牛deep learning入门教程

雷锋网(搜索“雷锋网”公众号关注)按:本文由Zouxy责编,全面介绍了深度学习的发展历史及其在各个领域的应用,并解释了深度学习的基本思想,深度与浅度学习的区别和深度学习与神经网络之间的关系。深度学习,即Deep Learning,是一种学习算法(Learning algorithm),亦是人工智能领域的一个重要分支。从快速发展到实际应用,短短几年时间里,深度学习颠覆了语音识别、图像分类、文本理解等...
阅读(33) 评论(0)

Deep Learning深入浅出

作者:Jacky Yang链接:https://www.zhihu.com/question/26006703/answer/129209540来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。关于深度学习,网上的资料很多,不过貌似大部分都不太适合初学者。 这里有几个原因:1.深度学习确实需要一定的数学基础。如果不用深入浅出地方法讲,有些读者就会有畏难的情绪,因而容易过...
阅读(101) 评论(0)

在线机器学习FTRL(Follow-the-regularized-Leader)算法介绍

看到好文章,坚决转载!哈哈,学术目的~~最近几个同事在做推荐平台的项目,都问到怎么实现FTRL算法,要求协助帮忙实现FTRL的算法模块。今天也是有空,赶紧来做个整理。明天还要去上海参加天善智能组织的FLY BI大数据分享会。有兴趣参加线下活动的可以多关注下微博和微信的信息。没事可以多参加分享分享。现在特别是像做在线学习和CTR这块,应用LR是最广泛的。但是批量处理超大规模的数据集和在线数据流时就遇...
阅读(61) 评论(0)

5天突击GRE(155+170+4.0)

个人认为最靠谱GRE经验,没有之一虽然分数并不高(V 155 + Q 170 + AW 4.0),但是自认为有很多很多可以拿来给短期突击同学的宝贵经验。首先是自己的背景,交大英语教改实验班(交大同学应该都懂),四级653分,六级621分,(四六级是裸考的因为没时间准备);托福115;英语上自己一直还算是有些自信的,没有用过单词书背过单词,所以当知道GRE要背大量的单词的时候我是拒绝的,这也是一直迟...
阅读(57) 评论(0)

通俗易懂地讲解牛顿迭代法求开方

五次及以上多项式方程没有根式解(就是没有像二次方程那样的万能公式),这个是被伽罗瓦用群论做出的最著名的结论。但是,没有王屠夫难道非得吃带毛猪?工作生活中还是有诸多求解高次方程的真实需求(比如行星的轨道计算,往往就是涉及到很复杂的高次方程),这日子可怎么过下去啊?没有根式解不意味着方程解不出来,数学家也提供了很多方法,牛顿迭代法就是其中一种。1 切线是曲线的线性逼近要讲牛顿迭代法之前我们先说一个关键...
阅读(47) 评论(0)

机器学习 正则化

模式识别理论中,常提到的正则化到底是干什么的?渐渐地,听到的多了,看到的多了,再加上平时做东西都会或多或少的接触,有了一些新的理解。1. 正则化的目的:防止过拟合!2. 正则化的本质:约束(限制)要优化的参数。关于第1点,过拟合指的是给定一堆数据,这堆数据带有噪声,利用模型去拟合这堆数据,可能会把噪声数据也给拟合了,这点很致命,一方面会造成模型比较复杂(想想看,本来一次函数能够拟合的数据,现在由于...
阅读(50) 评论(0)
763条 共51页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:661073次
    • 积分:11549
    • 等级:
    • 排名:第1293名
    • 原创:384篇
    • 转载:373篇
    • 译文:6篇
    • 评论:196条
    博客专栏
    友情链接
    文章分类
    最新评论