[置顶] vim操作汇总

Vim 是 Linux 系统上的最著名的文本/代码编辑器,也是早年的 Vi 编辑器的加强版,而 gVim 则是其 Windows 版。它的最大特色是完全使用键盘命令进行编辑,脱离了鼠标操作虽然使得入门变得困难,但上手之后键盘流的各种巧妙组合操作却能带来极为大幅的效率提升。因此 Vim 和现代的编辑器(如 Sublime Text)有着非常巨大的差异,而且入门学习曲线陡峭,需要记住很多按键组合和命令...
阅读(928) 评论(4)

[置顶] Stanford CS231n Notes

一、文章来由好久没写原创博客了,一直处于学习新知识的阶段。来新加坡也有一个星期,搞定签证、入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不对的地方,欢迎批评指正。二、cs231n 课程第二讲:数据驱动的图像分类方式:K最近邻与线性分类器(1)经典图像识别算法不可扩展,data-driven的方式更科学 早期没有使用的原因是早期没有这么多d...
阅读(136) 评论(0)

[置顶] MLDS Lecture Notes

一、文章来由原博客来自:http://blog.csdn.net/scythe666/article/details/75265338 因为篇幅太长,不宜阅读与编辑,分篇如下二、《一天搞懂深度学习》300多页的PPT,台大教授写的好文章。 对应的视频地址1、Lecture I: Introduction of Deep Learning(1)machine learning≈找函数trainin...
阅读(142) 评论(0)

[置顶] DL超级大火锅

0x00 文章来由DL问题不断整理,大神请绕道0x01 卷积层学习卷积核?该问题来自于知乎: https://www.zhihu.com/question/39022858,里面说到0x02 loss很低,但是accuracy一直在50%左右一般是什么原因,1500张图片做train最可能 overfitting,数据集不够?参数设置不对? 问实验室一圈无果 base_lr降低一点,step n...
阅读(227) 评论(0)

[置顶] Deep Learning 资料库

一、文章来由网络好文章太多,而通过转载文章做资料库太麻烦,直接更新这个博文。二、汇总1、台大李宏毅老师的课正片:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 深入浅出讲解deep learning 顺带附上李老师的《一天搞...
阅读(214) 评论(0)

[置顶] 要怎样努力,才能成为很厉害的人?

博主是一个热血青年吧,一直信奉的也是一切杀不死我的,只会令我更坚强~~最近做出了一个看似很疯狂,但是完全足以改变一生的决定。闲余时间逛知乎,看了一个很有共鸣的答案。也许有些人觉得有些决定很疯狂不能实现,我只想说那是你太现实而无法实现梦想找的借口。转自:https://www.zhihu.com/question/22921426「怎样才是很厉害的人?」「自然是 有好看的身材以及容颜 被很多人喜欢 ...
阅读(885) 评论(8)

[置顶] 感悟随笔

一、限制一件事情能否完成,第一是你的耐心,第二是你的寿命。如果这两个都能付出,那没什么事情不能完成的。...
阅读(1321) 评论(2)

[置顶] Java基础总结(内部版)

Java基础总结  琥魄 浏览 4 2016-07-28 10:45:38 发表于: 网商银行技术博客 >> Java技术 编辑 删除 Java核心技术Java   修改标签   标签历史 哈哈,内部博客排版明显好看很多,CSDN要加油啦~~~自己转自己的,留个纪念 实习期间整理~~希望对大家能有帮助 一、JVM 1、内存模型 1.1.1...
阅读(2142) 评论(5)

[置顶] 《TCP/IP卷》读书笔记

本书所有测试网络例子1、TCP/IP的分层在图1 - 2的右边,我们注意到应用程序通常是一个用户进程,而下三层则一般在(操作系 统)内核中执行。尽管这不是必需的,但通常都是这样处理的,例如 U N I X操作系统。在图1 - 2中,顶层与下三层之间还有另一个关键的不同之处。应用层关心的是应用程序的 细节,而不是数据在网络中的传输活动。下三层对应用程序一无所知,但它们要处理所有的 通信细节。2、...
阅读(1436) 评论(0)

[置顶] Java基础总结

一、JVM1、内存模型1.1.1 内存分几部分(1)程序计数器可看作当前线程所执行的字节码的行号指示器。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。在线程创建时创建。执行本地方法时,PC的值为null。为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,线程私有。(2)...
阅读(1822) 评论(3)

[置顶] Java超级大火锅

实习换语言到Java,基础很多需要整理,专门为Java开一个大火锅~~1、事务 事务指的是逻辑上的一组操作,这组操作要么全部成功,要么全部失败。 事务的4大特性:ACID,指数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。详见:http://blog.csdn.net/sc...
阅读(3080) 评论(2)

[置顶] C/C++超级大火锅

写在前面最近接触到一些基础知识,平时遇到的编程困惑也加入其中。准确说是写给自己看的,但是如果大家可以借鉴就更好。多数是c/c++,也有少量java基础和其他知识,貌似应该叫《计算机基础问题汇总》比较好。不断更新~~一、new 跟 malloc 的区别是什么?1.malloc/free是C/C++语言的标准库函数,new/delete是C++的运算符2.new能够自动分配空间大小3.对于用户自定义的对...
阅读(2859) 评论(3)

[置顶] 楼天城楼教主的acm心路历程(作为励志用)

转载的文章,好好加油!说不定什么时候我也可以说:“这题我虽然不会,但是AC还是可以的”。。。 利用假期空闲之时,将这几年GCJ,ACM,TopCoder 参加的一些重要比赛作个 回顾。昨天是GCJ2006 的回忆,今天时间上更早一些吧,我现在还清晰记得3 年 前,我刚刚参加ACM 时参加北京赛区2005 和杭州赛区2005 的情况。 2005 年ACM-ICPC——酸甜苦辣...
阅读(3548) 评论(0)

学生免费使用JetBrains系列产品

免费用啦JetBrains 的计划 Academic License Program,网址是https://www.jetbrains.com/student/。 用学校里的edu账号申请,类似微软的Spark计划,有效期1年,可以renew包括Intellij IDEA, ReSharper,ReSharper C++, dotTrace,dotMemory,dotCover,AppCode,C...
阅读(68) 评论(0)

安装 python/pip/numpy/matplotlib

1.下载并安装Python3.4在官网下载即可:Python官网  图1-1 图1-2打开Python图形界面: 图1-3输入 2+3+4+5,回车,出现如图,说明安装成功。  图1-42.安装pip (1)查看是否已安装pip 进入cmd命令窗口,输入pip --version ,查看是否已安装pip,如果出现下图,说明已安装了pip,直接跳转至步骤(3)  图2-1否则,如图2-2,说明没有安...
阅读(83) 评论(0)

nvidia-docker for your GPU application development

We just finished installing DGX-1. Yayy!! NVIDIA suggests the use of nvidia-docker to develop and prototype GPU application on DGX-1. The reason is that many popular deep learning frameworks such as t...
阅读(204) 评论(0)

LARC DL笔记(三):finetune food-101 VS baseline

0x00 objectfood101数据集使用Googlenet train好了与baseline比较0x01 有用信息(1)loss很低,但是accuracy一直在50%左右一般是什么原因 如果loss一直降低而你的validation accuracy不升高的话,就是overfit了 (2)现在foodai的accuracy有多高,用了多少数据 六七十,差不多每一类留了50张测试。其他都...
阅读(151) 评论(0)

opencv SVM

作者:咕唧咕唧liukun321来自:http://blog.csdn.NET/liukun321先来看一下什么是SVM(支持向量机) SVM是一种训练机器学习的算法,可以用于解决分类和回归问题,同时还使用了一种称之为kernel trick(支持向量机的核函数)的技术进行数据的转换,然后再根据这些转换信息,在可能的输出之中找到一个最优的边界(超平面)。简单来说,就是做一些非常复杂的数据转换工作,...
阅读(146) 评论(0)

opencv Hog+SVM

这里总结网上自己找到的资料,搞一个简单的框架供大家参考一下。OpenCV官方的SVM代码在http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html在http://blog.csdn.net/sangni007/article/details/...
阅读(144) 评论(0)

16 个 Linux 服务器监控命令和watch

如果你想知道你的服务器正在做干什么,你就需要了解一些基本的命令,一旦你精通了这些命令,那你就是一个 专业的 Linux 系统管理员。有些 Linux 发行版会提供 GUI 程序来进行系统的监控,例如 SUSE Linux 就有一个非常棒而且专业的工具 YaST,KDE 的 KDE System Guard 同样很出色。当然,要使用这些工具,你必须在服务器跟前进行操作,而且这些 GUI 的程序占用了...
阅读(137) 评论(0)

LARC DL笔记(二) 训练自己的img

继看完 贺完结!CS231n官方笔记 上一次已经成功跑起caffe自带的例程,mnist和cifar10 但是终归用的是里面写好的脚本,于是打算训练自己的img〇、目标准备好food图片3类(出于数据安全考虑,使用food101公开数据集)每一类都是没有resize的1000张图片现在的任务就是: 将这三类food分类 通过这个小任务应该可以熟练caffe使用小问题列表:(1)这个后面的数字只...
阅读(185) 评论(0)

CMake与Make

大家都知道,写程序大体步骤为:1.用编辑器编写源代码,如.c文件。2.用编译器编译代码生成目标文件,如.o。3.用链接器连接目标代码生成可执行文件,如.exe。但如果源文件太多,一个一个编译时就会特别麻烦,于是人们想到,为什么不设计一种类似批处理的程序,来批处理编译源文件呢,于是就有了make工具,它是一个自动化编译工具,你可以使用一条命令实现完全编译。但是你需要编写一个规则文件,make依据它来...
阅读(146) 评论(0)

LARC DL笔记(一): Caffe Setup

采用杂记的形式从查找到知乎页面开始:https://www.zhihu.com/question/27982282 到mnist example页面:http://caffe.berkeleyvision.org/gathered/examples/mnist.html 到caffe installation页面:http://caffe.berkeleyvision.org/installat...
阅读(193) 评论(0)

Linux下用户组、文件权限详解

用户组在linux中的每个用户必须属于一个组,不能独立于组外。在linux中每个文件有所有者、所在组、其它组的概念- 所有者- 所在组- 其它组- 改变用户所在的组 所有者一般为文件的创建者,谁创建了该文件,就天然的成为该文件的所有者用ls ‐ahl命令可以看到文件的所有者也可以使用chown 用户名 文件名来修改文件的所有者 文件所在组当某个用户创建了一个文件后,这个文件的所在组就是该用户所在的...
阅读(153) 评论(0)
782条 共53页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:711932次
    • 积分:12084
    • 等级:
    • 排名:第1200名
    • 原创:391篇
    • 转载:385篇
    • 译文:6篇
    • 评论:207条
    博客专栏
    友情链接
    文章分类
    最新评论