关闭
当前搜索:

[置顶] wh常用命令

0x01 查看显卡 spci | grep -i vga 0x02 查看系统版本 cat /proc/version 0x03 查看NVIDIA 显卡 nvidia-smi 0x04 查看CUDA版本 nvcc -V 0x05 不断刷新一个命令 watch 0x06 查找一个命令 which 0x07 docker使用 ref:http://bl...
阅读(84) 评论(0)

[置顶] whEST - My Visual Programming Tool

GitHub Address is here /* Copyright (c) 2015-2017 by programmers. All rights reserved. Released under a GPL-3.0 license as described in the file LICENSE. */introductionwhEST is a Visual Programming t...
阅读(124) 评论(0)

[置顶] Neural Networks for Machine Learning

0x01 Introduction...
阅读(110) 评论(0)

[置顶] docker使用技巧

创建docker nvidia-docker run -it --name bcaffe -v /:/home compute.nvidia.com/nvidia/caffe bash start和打开docker ## start and connect back to previously created container $ nvidia-docker start bca...
阅读(267) 评论(0)

[置顶] tmux 使用

tmux 安装好了,现在就可以通过以下命令来启动它:$ tmux启动之后,可以看到命令行最底部多了一条绿色的状态条,上面显示了一些信息,比如计算机名和时间等。 要退出 tmux,可以输入 exit 回车或者按下组合键 [Ctrl+d] 。其实刚才我们启动 tmux 之后,它已经自动创建了一个会话(Session),会话是 tmux 的最主要的功能,接下来我们将介绍会话的一些功能。新建会话启动 tmu...
阅读(208) 评论(0)

[置顶] vim操作汇总

Vim 是 Linux 系统上的最著名的文本/代码编辑器,也是早年的 Vi 编辑器的加强版,而 gVim 则是其 Windows 版。它的最大特色是完全使用键盘命令进行编辑,脱离了鼠标操作虽然使得入门变得困难,但上手之后键盘流的各种巧妙组合操作却能带来极为大幅的效率提升。因此 Vim 和现代的编辑器(如 Sublime Text)有着非常巨大的差异,而且入门学习曲线陡峭,需要记住很多按键组合和命令...
阅读(1877) 评论(10)

[置顶] Stanford CS231n Notes

一、文章来由原博客来自:http://blog.csdn.net/scythe666/article/details/75265338 因为篇幅太长,不宜阅读与编辑,分篇如下二、cs231n 课程第二讲:数据驱动的图像分类方式:K最近邻与线性分类器(1)经典图像识别算法不可扩展,data-driven的方式更科学 早期没有使用的原因是早期没有这么多data,训练的模型是一个类(2)nearest...
阅读(613) 评论(0)

[置顶] MLDS Lecture Notes

一、文章来由原博客来自:http://blog.csdn.net/scythe666/article/details/75265338 因为篇幅太长,不宜阅读与编辑,分篇如下二、《一天搞懂深度学习》300多页的PPT,台大教授写的好文章。 对应的视频地址1、Lecture I: Introduction of Deep Learning(1)machine learning≈找函数trainin...
阅读(547) 评论(0)

[置顶] DL超级大火锅

0x00 文章来由DL问题不断整理0x01 卷积层学习卷积核?该问题来自于知乎: https://www.zhihu.com/question/39022858,里面说到0x02 loss很低,但是accuracy一直在50%左右一般是什么原因,1500张图片做train最可能 overfitting,数据集不够?参数设置不对? 问实验室一圈无果 base_lr降低一点,step num降低到5...
阅读(1441) 评论(0)

[置顶] Deep Learning 资料库

一、文章来由网络好文章太多,而通过转载文章做资料库太麻烦,直接更新这个博文。二、汇总1、台大李宏毅老师的课正片:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 深入浅出讲解deep learning 顺带附上李老师的《一天搞...
阅读(560) 评论(0)

[置顶] 要怎样努力,才能成为很厉害的人?

博主是一个热血青年吧,一直信奉的也是一切杀不死我的,只会令我更坚强~~最近做出了一个看似很疯狂,但是完全足以改变一生的决定。闲余时间逛知乎,看了一个很有共鸣的答案。也许有些人觉得有些决定很疯狂不能实现,我只想说那是你太现实而无法实现梦想找的借口。转自:https://www.zhihu.com/question/22921426「怎样才是很厉害的人?」「自然是 有好看的身材以及容颜 被很多人喜欢 ...
阅读(1293) 评论(8)

[置顶] 感悟随笔

一、限制一件事情能否完成,第一是你的耐心,第二是你的寿命。如果这两个都能付出,那没什么事情不能完成的。...
阅读(1650) 评论(2)

[置顶] Java基础总结(内部版)

Java基础总结  琥魄 浏览 4 2016-07-28 10:45:38 发表于: 网商银行技术博客 >> Java技术 编辑 删除 Java核心技术Java   修改标签   标签历史 哈哈,内部博客排版明显好看很多,CSDN要加油啦~~~自己转自己的,留个纪念 实习期间整理~~希望对大家能有帮助 一、JVM 1、内存模型 1.1.1...
阅读(2761) 评论(6)

[置顶] 《TCP/IP卷》读书笔记

本书所有测试网络例子1、TCP/IP的分层在图1 - 2的右边,我们注意到应用程序通常是一个用户进程,而下三层则一般在(操作系 统)内核中执行。尽管这不是必需的,但通常都是这样处理的,例如 U N I X操作系统。在图1 - 2中,顶层与下三层之间还有另一个关键的不同之处。应用层关心的是应用程序的 细节,而不是数据在网络中的传输活动。下三层对应用程序一无所知,但它们要处理所有的 通信细节。2、...
阅读(1656) 评论(0)

[置顶] Java基础总结

一、JVM1、内存模型1.1.1 内存分几部分(1)程序计数器可看作当前线程所执行的字节码的行号指示器。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。在线程创建时创建。执行本地方法时,PC的值为null。为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,线程私有。(2)...
阅读(2272) 评论(3)

[置顶] Java超级大火锅

实习换语言到Java,基础很多需要整理,专门为Java开一个大火锅~~1、事务 事务指的是逻辑上的一组操作,这组操作要么全部成功,要么全部失败。 事务的4大特性:ACID,指数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。详见:http://blog.csdn.net/sc...
阅读(3533) 评论(2)

[置顶] C/C++超级大火锅

写在前面最近接触到一些基础知识,平时遇到的编程困惑也加入其中。准确说是写给自己看的,但是如果大家可以借鉴就更好。多数是c/c++,也有少量java基础和其他知识,貌似应该叫《计算机基础问题汇总》比较好。不断更新~~一、new 跟 malloc 的区别是什么?1.malloc/free是C/C++语言的标准库函数,new/delete是C++的运算符2.new能够自动分配空间大小3.对于用户自定义的对...
阅读(3632) 评论(3)

[置顶] 楼天城楼教主的acm心路历程(作为励志用)

转载的文章,好好加油!说不定什么时候我也可以说:“这题我虽然不会,但是AC还是可以的”。。。 利用假期空闲之时,将这几年GCJ,ACM,TopCoder 参加的一些重要比赛作个 回顾。昨天是GCJ2006 的回忆,今天时间上更早一些吧,我现在还清晰记得3 年 前,我刚刚参加ACM 时参加北京赛区2005 和杭州赛区2005 的情况。 2005 年ACM-ICPC——酸甜苦辣...
阅读(3974) 评论(0)

[work]local安装cudnn5.0

0x01 文章来由 环境真是个麻烦事,caffe用的cudnn5,现在server升级cudnn6就用不了了,于是。。。 因为cudnn.h很难搞定,自己local安装,需要从cuda开始 0x02 local安装cuda8 已有教程:http://blog.csdn.net/P081513083/article/details/78617804?locationNum=3&fps=1...
阅读(25) 评论(0)

ubuntu16.04+CUDA本地安装+cuDNN本地安装+tensorflow

GPU card with CUDA Compute Capability 3.0 or higher.1、下载cuda_8.0.61_375.26_linux.run后放入soft文件夹,建立local文件夹(cuda安装路径)2、运行“sh cuda_8.0.61_375.26_linux.run”,3、在ubuntu系统中已经有显卡驱动时(利用nvidia-smi命令检测),跳过第一步显卡驱...
阅读(33) 评论(0)

Ubuntu设置环境变量

设置系统环境变量1打开终端并输入:sudo gedit /etc/environment。2输入用户密码。这时输入的密码是不可见的。3如图,在PATH="...."的末尾处添加::/opt/EmbedSky/4.3.3/bin其中/opt/EmbedSky/4.3.3/bin为你自己需要设置的环境变量路径。4使其立即生效,在终端执行:source /etc/environment或者重启电脑即可。...
阅读(59) 评论(0)

Ubuntu下配置Anaconda

安装AnacondaUbuntu下似乎库中不自带Anaconda,是自带纯净的python,且2.x和3.x都自带,但装包比较麻烦,不如一步到位装Anaconda。Anaconda的官方安装网址在 https://www.continuum.io/downloads/ 。在安装之前请先确认要安装的是python2.x or python3.x,确认之后则可点击安装。 由于Anaconda的官网下载...
阅读(82) 评论(0)

docker 删除一个或多个container

rm 删除一个或多个容器Usage: docker rm [OPTIONS] CONTAINER [CONTAINER...]Remove one or more containers -f,--force=falseForce removal of running container -l,--link=falseRemove the specified link andnot the...
阅读(42) 评论(0)

Linux local 安装

0x00 文章来由要装pytorch,实验室server没有权限安装,于是用local安装0x01 安装anaconda3一般来说 ignore the sudo prefix 就可以了,直接 follow 这个教程:http://blog.csdn.net/horcham/article/details/57075388安装结束后,anaconda有指导如何添加 pathinstallation...
阅读(37) 评论(0)

Ubuntu16.04 Python 3.6安装Pytorch 0.2

一般安装参照官网即可:http://pytorch.org/这里选择用pip方式安装:wget http://download.pytorch.org/whl/cu80/torch-0.2.0.post3-cp36-cp36m-manylinux1_x86_64.whl pip install torch-0.2.0.post3-cp36-cp36m-manylinux1_x86_64.whl12...
阅读(82) 评论(0)

conda创建python虚拟环境

1、首先在所在系统中安装Anaconda。可以打开命令行输入conda -V检验是否安装以及当前conda的版本。2、conda常用的命令。    1)conda list 查看安装了哪些包。    2)conda env list 或 conda info -e 查看当前存在哪些虚拟环境    3)conda update conda 检查更新当前conda3、创建python虚拟环境。    ...
阅读(48) 评论(0)

[work]pytorch win10 安装

创建虚拟环境conda create -n pytorch python=3.5 numpy pyyaml mkl...
阅读(75) 评论(0)

Windows下安装PyTorch0.3.0

本文系转载,出处:关于 PyTorch 0.3.0 在Windows下的安装和使用。PyTorch简介在2017年1月18日,facebook下的Torch7团队宣布PyTorch开源后就引来了剧烈的反响。PyTorch 是 Torch 在 Python 上的衍生版本。Torch 是一个使用 Lua 语言的神经网络库, Torch 很好用, 但是 Lua 流行度不够, 所以facebook开发团队...
阅读(42) 评论(0)

Win10 Python3.6下安装PyTorch

更新提醒:本文已过期,Windows下安装最新的PyTorch0.3.0请移步本人另一篇博客:Windows下安装PyTorch0.3.0。2017年1月18日,周董生日这一天,facebook下的torch7团队宣布Pytorch开源,官网地址:pytorch。pytorch是一个python优先的深度学习框架,是一个和tensorflow,Caffe,MXnet一样,非常底层的框架。先说下py...
阅读(46) 评论(0)

caffe slice和concat实现MultiTask

最近一段时间MultiTask网络比较流行,比如做人脸检测的时候,一个网络完成(人脸和非人脸)二分类任务的同时也要进行boudingbox回归或者人脸关键点回归。以人脸检测MTCNN为例,一个网络包含三个任务。训练的时候,一个batch中的图片,一部分用于二分类、一部分用于boundingbox 回归,一部分用于关键点回归。这种较复杂的样本组合完全可以通过slice和concat层来快速实现。——...
阅读(54) 评论(0)

Hinge Loss

Hinge Loss简介Hinge Loss是一种目标函数(或者说损失函数)的名称,有的时候又叫做max-margin objective。其最著名的应用是作为SVM的目标函数。其二分类情况下,公式如下: l(y)=max(0,1−t⋅y)其中,y是raw输出预测值,t为目标值(±1)。变种实际应用中,一方面很多时候我们的y的值域并不是[-1,1],比如我们可能更希望y更接近于一个概率,即其值域最...
阅读(60) 评论(0)

caffe基本数据结构---blob

Caffe使用blob存储、交换、操纵这些信息。blob是整个框架的标准的数组结构和统一存储接口。Blob是Caffe处理和传输的真实数据的包装类,同时它还隐含提供了在CPU和GPU之间同步数据的能力。在数学上,一个blob就是一个4维的数组,它是按照c语言风格存储的,即行优先。由于我们经常对blob的值和梯度感兴趣,所以blob存储了2块data和diff.前者是正常的传输数据,后者是网络计算的...
阅读(56) 评论(0)

caffe SigmoidCrossEntropyLossLayer 理论代码学习

交叉熵损失函数交叉熵损失函数的简单介绍的链接 下面我们就介绍一下caffe里面实现交叉熵的流程: 首先:下面这个式子就是交叉熵的损失表达式 E=−1n∑n=1n[pnlogp^n+(1−pn)log(1−p^n)]SigmoidCrossEntropyLossLayer的输入bottom[0],bottom[1],其中bottom[0]是输入的预测的结果,bottom[1]是标签值。bottom的...
阅读(51) 评论(0)

Caffe loss

经过这一通训练,总算可以得到相应的模型了(具体操作网上已经烂大街了),我们要是修改caffe参数,甚至是修改caffe内部程序,必须是以输出结果为动力,现在我们就看看我们关心的caffe输出都有哪些,虽然每一层都可以输出,但是我们最关心的有Loss层。       深度学习就是通过最小化输出和目标的Loss来驱动的。       值得注意的是:以mnist为例,我们所得到的ip2层已经是我们预测(...
阅读(48) 评论(0)

word2vec和word embedding有什么区别?

作者:Scofield链接:https://www.zhihu.com/question/53354714/answer/155313446来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。很好,正好可借此机会介绍词向量、word2vec以及DeepNLP整套相关的东西:文章很长,是从CSDN上写好复制过来的,亦可直接跳到博客观看:深度学习(Deep Learning)...
阅读(103) 评论(0)

为什么要做 word embedding

该篇主要是讨论为什么要做word embedding:gitbook阅读:Word Embedding介绍至于word embedding的详细训练方法在下一节描述。目录单词表达One hot representationDistributed representationWord embedding目的数据量角度神经网络分析训练简述单词表达先前在卷积神经网络的一节中,提到过图片是如何在计算机中被...
阅读(88) 评论(0)

sparse coding VS autoencoder

Finding the differences can be done by looking at the models. Let's look at sparse coding first.Sparse codingSparse coding minimizes the objectiveLsc=||WH−X||22⏟reconstruction term+&#x03...
阅读(102) 评论(0)

RBM(限制波尔兹曼机)

声明:1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参考原文献。3)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的。如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满意为止。4)...
阅读(100) 评论(0)
895条 共45页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:999262次
    • 积分:14917
    • 等级:
    • 排名:第914名
    • 原创:419篇
    • 转载:470篇
    • 译文:6篇
    • 评论:248条
    博客专栏
    友情链接
    文章分类
    最新评论