[置顶] whEST - My Visual Programming Tool

GitHub Address is here /* Copyright (c) 2015-2017 by programmers. All rights reserved. Released under a GPL-3.0 license as described in the file LICENSE. */introductionwhEST is a Visual Programming t...
阅读(58) 评论(0)

[置顶] Neural Networks for Machine Learning

0x01 Introduction...
阅读(53) 评论(0)

[置顶] docker使用技巧

创建dockernvidia-docker run -it --name bcaffe -v /:/home zh-caffe bashstart和打开docker## start and connect back to previously created container my-tensorflow $ nvidia-docker start bcaffe $ nvidia-docker at...
阅读(161) 评论(0)

[置顶] tmux 使用

tmux 安装好了,现在就可以通过以下命令来启动它:$ tmux启动之后,可以看到命令行最底部多了一条绿色的状态条,上面显示了一些信息,比如计算机名和时间等。 要退出 tmux,可以输入 exit 回车或者按下组合键 [Ctrl+d] 。其实刚才我们启动 tmux 之后,它已经自动创建了一个会话(Session),会话是 tmux 的最主要的功能,接下来我们将介绍会话的一些功能。新建会话启动 tmu...
阅读(154) 评论(0)

[置顶] vim操作汇总

Vim 是 Linux 系统上的最著名的文本/代码编辑器,也是早年的 Vi 编辑器的加强版,而 gVim 则是其 Windows 版。它的最大特色是完全使用键盘命令进行编辑,脱离了鼠标操作虽然使得入门变得困难,但上手之后键盘流的各种巧妙组合操作却能带来极为大幅的效率提升。因此 Vim 和现代的编辑器(如 Sublime Text)有着非常巨大的差异,而且入门学习曲线陡峭,需要记住很多按键组合和命令...
阅读(1716) 评论(10)

[置顶] Stanford CS231n Notes

一、文章来由原博客来自:http://blog.csdn.net/scythe666/article/details/75265338 因为篇幅太长,不宜阅读与编辑,分篇如下二、cs231n 课程第二讲:数据驱动的图像分类方式:K最近邻与线性分类器(1)经典图像识别算法不可扩展,data-driven的方式更科学 早期没有使用的原因是早期没有这么多data,训练的模型是一个类(2)nearest...
阅读(441) 评论(0)

[置顶] MLDS Lecture Notes

一、文章来由原博客来自:http://blog.csdn.net/scythe666/article/details/75265338 因为篇幅太长,不宜阅读与编辑,分篇如下二、《一天搞懂深度学习》300多页的PPT,台大教授写的好文章。 对应的视频地址1、Lecture I: Introduction of Deep Learning(1)machine learning≈找函数trainin...
阅读(397) 评论(0)

[置顶] DL超级大火锅

0x00 文章来由DL问题不断整理,大神请绕道0x01 卷积层学习卷积核?该问题来自于知乎: https://www.zhihu.com/question/39022858,里面说到0x02 loss很低,但是accuracy一直在50%左右一般是什么原因,1500张图片做train最可能 overfitting,数据集不够?参数设置不对? 问实验室一圈无果 base_lr降低一点,step n...
阅读(764) 评论(0)

[置顶] Deep Learning 资料库

一、文章来由网络好文章太多,而通过转载文章做资料库太麻烦,直接更新这个博文。二、汇总1、台大李宏毅老师的课正片:http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html 深入浅出讲解deep learning 顺带附上李老师的《一天搞...
阅读(424) 评论(0)

[置顶] 要怎样努力,才能成为很厉害的人?

博主是一个热血青年吧,一直信奉的也是一切杀不死我的,只会令我更坚强~~最近做出了一个看似很疯狂,但是完全足以改变一生的决定。闲余时间逛知乎,看了一个很有共鸣的答案。也许有些人觉得有些决定很疯狂不能实现,我只想说那是你太现实而无法实现梦想找的借口。转自:https://www.zhihu.com/question/22921426「怎样才是很厉害的人?」「自然是 有好看的身材以及容颜 被很多人喜欢 ...
阅读(1133) 评论(8)

[置顶] 感悟随笔

一、限制一件事情能否完成,第一是你的耐心,第二是你的寿命。如果这两个都能付出,那没什么事情不能完成的。...
阅读(1596) 评论(2)

[置顶] Java基础总结(内部版)

Java基础总结  琥魄 浏览 4 2016-07-28 10:45:38 发表于: 网商银行技术博客 >> Java技术 编辑 删除 Java核心技术Java   修改标签   标签历史 哈哈,内部博客排版明显好看很多,CSDN要加油啦~~~自己转自己的,留个纪念 实习期间整理~~希望对大家能有帮助 一、JVM 1、内存模型 1.1.1...
阅读(2541) 评论(6)

[置顶] 《TCP/IP卷》读书笔记

本书所有测试网络例子1、TCP/IP的分层在图1 - 2的右边,我们注意到应用程序通常是一个用户进程,而下三层则一般在(操作系 统)内核中执行。尽管这不是必需的,但通常都是这样处理的,例如 U N I X操作系统。在图1 - 2中,顶层与下三层之间还有另一个关键的不同之处。应用层关心的是应用程序的 细节,而不是数据在网络中的传输活动。下三层对应用程序一无所知,但它们要处理所有的 通信细节。2、...
阅读(1579) 评论(0)

[置顶] Java基础总结

一、JVM1、内存模型1.1.1 内存分几部分(1)程序计数器可看作当前线程所执行的字节码的行号指示器。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。在线程创建时创建。执行本地方法时,PC的值为null。为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,线程私有。(2)...
阅读(2088) 评论(3)

[置顶] Java超级大火锅

实习换语言到Java,基础很多需要整理,专门为Java开一个大火锅~~1、事务 事务指的是逻辑上的一组操作,这组操作要么全部成功,要么全部失败。 事务的4大特性:ACID,指数据库事务正确执行的四个基本要素的缩写。包含:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。详见:http://blog.csdn.net/sc...
阅读(3367) 评论(2)

[置顶] C/C++超级大火锅

写在前面最近接触到一些基础知识,平时遇到的编程困惑也加入其中。准确说是写给自己看的,但是如果大家可以借鉴就更好。多数是c/c++,也有少量java基础和其他知识,貌似应该叫《计算机基础问题汇总》比较好。不断更新~~一、new 跟 malloc 的区别是什么?1.malloc/free是C/C++语言的标准库函数,new/delete是C++的运算符2.new能够自动分配空间大小3.对于用户自定义的对...
阅读(3332) 评论(3)

[置顶] 楼天城楼教主的acm心路历程(作为励志用)

转载的文章,好好加油!说不定什么时候我也可以说:“这题我虽然不会,但是AC还是可以的”。。。 利用假期空闲之时,将这几年GCJ,ACM,TopCoder 参加的一些重要比赛作个 回顾。昨天是GCJ2006 的回忆,今天时间上更早一些吧,我现在还清晰记得3 年 前,我刚刚参加ACM 时参加北京赛区2005 和杭州赛区2005 的情况。 2005 年ACM-ICPC——酸甜苦辣...
阅读(3816) 评论(0)

梳理caffe代码math_functions

先从caffe中使用的函数入手看看:[cpp] view plain copy#include   #include     #include     #include "caffe/common.hpp"  #include "caffe/util/math_functions.hpp"  #include "caffe/util/rng.hpp"    namespace caffe {  /...
阅读(8) 评论(0)

Caffe源码:math_functions 分析

目录目录主要函数caffe_cpu_gemm 函数caffe_cpu_gemv 函数caffe_axpy 函数caffe_set 函数caffe_add_scalar 函数caffe_copy 函数caffe_scal 函数caffeine_cup_axpby 函数caffe_add caffe_sub caffe_mul caffe_div 函数caffe_powx caffe_sqr caff...
阅读(7) 评论(0)

CNN卷积神经网络

CNN是一种多层神经网络,基于人工神经网络,在人工神经网络前,用滤波器进行特征抽取,使用卷积核作为特征抽取器,自动训练特征抽取器,就是说卷积核以及阈值参数这些都需要由网络去学习。图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。一般卷积神经网络的结构:前面feature extraction部分体现了CNN的特点,feature extraction部分最后的输出可以作...
阅读(25) 评论(0)

VQA 之 Multimodal Compact Bilinear Pooling

涉及论文 [1]Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding https://www.arxiv.org/pdf/1606.01847.pdf [2]Compact Bilinear Pooling https://arxiv.org/pdf/1511.06062.pdf...
阅读(9) 评论(0)

caffe代码阅读5:Layer的实现细节

一、Layer的作用简介Layer实际上定义了Layer的基本操作,即初始化层、前向传播和反向传播。在前向传播中根据bottom blob得到top blob,反向传播则根据top反传到bottom。而且在前传的时候还可以计算loss,一般来说只有最后一层才会计算loss,虽然每个层都有计算loss的功能。Layer类在没有实现GPU前传和反传的时候会自动使用CPU的实现。下面给出Layer类的具...
阅读(12) 评论(0)

形象的解释神经网络激活函数的作用

查阅资料和学习,大家对神经网络中激活函数的作用主要集中下面这个观点:激活函数是用来加入非线性因素的,解决线性模型所不能解决的问题。下面我分别从这个方面通过例子给出自己的理解~@lee philip@颜沁睿俩位的回答已经非常好了,我举的例子也是来源于他们,在这里加入了自己的思考,更加详细的说了一下~开讲~首先我们有这个需求,就是二分类问题,如我要将下面的三角形和圆形点进行正确的分类,如下图:利用我们...
阅读(30) 评论(0)

卷积和卷积神经网络

继续科普系列,用例子说明为何我们需要卷积神经网络,以及卷积在神经网络中的作用。目前网上的卷积网络科普大多是翻译的,内容大同小异。本文会更偏重于实际例子。如果觉得本文有帮助,请记得点个赞噢。如需转载本文,请与本人联系,谢谢。1. 找橘猫:最简单的办法今天我们的任务是找出图中有没有橘猫:怎样用最简单(笨)的方法完成这个任务?那肯定是看图中的橘色占多少面积,比如说超过10%就认为有橘猫:但怎么告诉电脑?...
阅读(19) 评论(0)

从AlexNet到ResNet,从里程碑到里程碑

本文主要介绍一下AlexNet、VGG、GoogLeNet以及ResNet这几个经典模型。顺便附上部分PyTorch实现。网上的各种介绍很多,我也就不再重复说了。这篇文章主要是说说自己的感想。今天看AlexNet其实已经颇为平淡了,毕竟这几年在网络工程上已经有了很大的进步,AlexNet的很多设计也不再被使用,例如LRN就被BN代替。不过当年AlexNet在两个GPU上跑的设计,倒是影响了后面出现...
阅读(16) 评论(0)

Global average Pooling

最近在看关于cifar10 的分类的识别的文章在看all convolution network 中看到中用到一个global average pooling 下面就介绍一下global average pooling 这个概念出自于 network in network 主要是用来解决全连接的问题,其主要是是将最后一层的特征图进行整张图的一个均值池化,形成一个特征点,将这些特征点组成最后的特征向...
阅读(20) 评论(0)

Learning Deep Features for Discriminative Localization 笔记2

作者:Dr.Frankenstein链接:https://www.zhihu.com/question/67987641/answer/258570104来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。不知道用文科生的视角解读是不是意味着不能再中英混杂装逼了……anyway。本文的动机如下:曾经有人提出过一个方法叫做global average pooling(GAP...
阅读(17) 评论(0)

论文阅读-《Learning Deep Features for Discriminative Localization》

转自:http://blog.csdn.net/yaoqi_isee/article/details/62214648收录于CVPR2016关于全连接层不能保持spatial information的理解 相比全连接层,卷积层是一个spatial-operation,能够保持物体的空间信息(translation-variant)。比如一个物体原来在左上角,卷积之后的结果feature-map在左...
阅读(33) 评论(0)

Neural Style

https://www.instapainting.com/assets...
阅读(21) 评论(0)

Visualizing and understandingConvolutional Networks笔记4

之前,我知道可以可视化CNN,也只是知道有这么一回事情。至于它是“怎么做的、其原理是什么、给我们的指导意义是什么”,也不清楚。说白了,就是我知道有“CNN可视化”,仅仅停留在“知道”层面!但当自己需要运用、理解其他CNN可视化技术时,才晓得将这篇paper精读一下。 Background1)在很多分类任务中(如手写字符识别、人脸识别,以及极具挑战性的Imagenet Classification)...
阅读(22) 评论(0)

Visualizing and understandingConvolutional Networks笔记3

本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主要通过Deconvnet(反卷积)来可视化卷积网络,来理解卷积网络,并调整卷积网络;本文通过Deconvnet技术,可视化Alex-net,并指出了Alex-net的一些不足,最后修改网络结构,使得分类结果提升。摘要:CNN已经获得很好的结果,但是并没有明确的理解为什么CNN会表现的这么好,或者CNN应...
阅读(23) 评论(0)

Visualizing and Understanding Convolutional Networks笔记2

Contents反卷积结构选取遮挡敏感性图片内特征相关性分析实验本文为20141024周报。在所有深度网络中,卷积神经网和图像处理最为密切相关,卷积网络在很多图片分类竞赛中都取得了很好的效果,但卷积网调参过程很不直观,很多时候都是碰运气。为此,卷积网络发明者Yann LeCun的得意门生Matthew Zeiler在2013年专门写了一篇论文,阐述了如何用反卷积网络可视化整个卷积网络,并进行分析和...
阅读(18) 评论(0)

深度学习中的卷积与反卷积

卷积与反卷积操作在图像分类、图像分割、图像生成、边缘检测等领域都有很重要的作用。为了讲明白这两种操作,特别是反卷积操作,本文将依照神经网络中的编码器——>解码器——>卷积——>反卷积 的思路来一步步介绍。编码器与解码器神经网络本质上就是一个线性变换,通过将输入的多维向量与权重矩阵相乘,得到一个新的多维向量。当输入向量的维度高于输出向量的维度时,神经网络就相当于一个编码器,实现了对高维向量的低维特征...
阅读(30) 评论(0)

反卷积

反卷积(Deconvolution)的概念第一次出现是Zeiler在2010年发表的论文Deconvolutional networks中,但是并没有指定反卷积这个名字,反卷积这个术语正式的使用是在其之后的工作中(Adaptive deconvolutional networks for mid and high level feature learning)。随着反卷积在神经网络可视化上的成功应...
阅读(20) 评论(0)

Visualizing and Understanding Convolutional Networks笔记1

先贴一些不错的笔记http://www.gageet.com/2014/10235.phphttp://blog.csdn.net/whiteinblue/article/details/43312059视频:http://videolectures.net/eccv2014_zeiler_convolutional_networks/https://www.cnblogs.com/everyda...
阅读(23) 评论(0)

ipynb--->py

...
阅读(45) 评论(0)

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 中文翻译

PDF版本下载:http://download.csdn.net/detail/zcy0xy/9739878Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps摘要本文提出了图像分类的可视化模型,这一模型使用了深度卷积网络(Convnet)。基于分别计算分类得分的梯...
阅读(32) 评论(0)
835条 共42页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:875876次
    • 积分:13648
    • 等级:
    • 排名:第1040名
    • 原创:406篇
    • 转载:423篇
    • 译文:6篇
    • 评论:231条
    博客专栏
    友情链接
    文章分类