【第22期】观点:IT 行业加班,到底有没有价值?

POJ2155 Matrix(经典二维树状数组)

原创 2016年08月31日 10:53:51

题意:

给出一个矩阵,其中的元素要么是0要么是1,现在有两种操作,一种是将一个子矩阵内的元素全部反转,一种是查询元素(x,y)对应的值。

要点:

这题是非常经典的一道二维树状数组题,难点是怎么修改子矩阵内的值,其实只要每次修改(x1,y1),(x1,y2+1),{x2+1,y1},(x2+1,y2+1)这四个点的值即可。

主要思路可以参考这个论文:点击打开链接

这个论文里有点说的不是很清楚:一维的时候为什么可以通过求sum(dx)%2来得到变化次数,其实是这样的,我们可以这么想,假如有一个区间[a,b],这个区间内的元素都要变

假设一:a<=x<=b,这样x前的元素之和+1,也就是x变化了一次。

假设二:如果a<b<x,这样x之前的元素和+2,sum%2不改变x的值。

假设三:如果a<b<x则根本不影响。

还有一个问题就是为什么要改变y+1而不是y:主要是考虑到x==y的时候,只有改变y+1才能满足上述的假设一,而x==y+1时满足假设二。

16040779 Seasonal 2155 Accepted 4484K 454MS C++ 963B 2016-08-31 10:23:52

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int n;
int map[1050][1050];

int lowbit(int x)
{
	return x&(-x);
}
void add(int x,int y,int w)
{
	for (int i = x; i <= n; i += lowbit(i))
		for (int j = y; j <= n; j += lowbit(j))
			map[i][j] += w;
}
int sum(int x, int y)
{
	int temp = 0;
	for (int i = x; i > 0; i -= lowbit(i))
		for (int j = y; j > 0; j -= lowbit(j))
			temp += map[i][j];
	return temp;
}

int main()
{
	int t;
	scanf("%d", &t);
	while (t--)
	{
		int p;
		memset(map, 0, sizeof(map));
		scanf("%d%d", &n, &p);
		while (p--)
		{
			char order[5];
			scanf("%s", order);
			if (order[0] == 'C')
			{
				int x1, y1, x2, y2;
				scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
				add(x1, y1, 1);
				add(x2 + 1, y1, 1);
				add(x1, y2 + 1, 1);
				add(x2 + 1, y2 + 1, 1);
			}
			else if(order[0]=='Q')
			{
				int x, y;
				scanf("%d%d", &x, &y);
				printf("%d\n", sum(x, y) % 2);
			}	
		}
		printf("\n");
	}
	return 0;
}


,

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

poj 2155 Matrix(二维树状数组,好题)中等难度题目,更新区域,查询单点

1、http://poj.org/problem?id=2155 2、题目大意: 有一个n*n的矩阵,初始值时0,现在对该矩阵做两种操作,C x1 y1 x2 y2,是将这一区域的值是0的换成1,是1...

poj 2155 Martrix(二维树状数组)

Matrix Time Limit: 3000MS   Memory Limit:

POJ - 2155 Matrix (二维树状数组)

题目链接:http://poj.org/problem?id=2155点击打开链接 Matrix Time Limit: 3000MS   Memory Limit: ...

POJ 2155 Matrix 二维树状数组

又是一道树状数组的题目,而且是一道二维的好题 题目要求是,一些操作,可能是对某个矩阵内的所有值取反,可能是问的是某个位置的值 如图 假如我们要把B矩阵的所有值都取反,我们只需要操纵矩阵的四个顶点即可,更新左下角顶点的值增1相当于把区域ABCD的变换次数增1,左上角顶点的值增1,相当于区域AC的变换次数增1,右上角顶点的值增1,相当于区域C的变换次数增1,右下角顶点的值增1,相当于区域CD的变换次数增1,最后我们可以发现,除了B区域外,A,C,D,都增加了偶数次的变换,相当于没有变化。所以,每次我们只需对四个顶点进行增1操作即可。在这

http://acm.hdu.edu.cn/showproblem.php?pid=1892&&二维树状数组

<div style="font-family: Arial,Verdana,sans-serif; font-size: 12px; background-color: rgb(255,255,255); margin-top: 5px; margin-right: 5px; margin-bottom: 5px; margin-left: 5px; padding-top: 0px; padding-right: 0px; padding-bottom:
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)