# 凸包Graham扫描法->HDU3847

### Graham扫描法求凸包

Graham扫描法：

PS:这样预处理后,保证p[0],p[1]和p[n-1]都是凸包上的点.

### HDU3847

``````#include <stdio.h>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <float.h>
using namespace std ;
#define MAX 110
const double eps = 1e-8 ;
int sgn(double x)
{
if(fabs(x) < eps) return 0 ;
if(x < 0) return -1 ;
else return 1 ;
}
struct Point
{
double x , y ;
Point(){}
Point(double _x , double _y)
{
x = _x ; y = _y ;
}
Point operator - (const Point &b) const
{
return Point(x - b.x , y - b.y) ;
}
double operator ^ (const Point &b) const
{
return x*b.y - y*b.x ;
}
double operator * (const Point &b) const
{
return x*b.x + y*b.y ;
}
};
struct Line
{
Point s , e ;
Line(){}
Line(Point _s , Point _e)
{
s = _s ; e = _e ;
}
};
double xmult(Point p0,Point p1,Point p2) //叉积p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
double dist(Point a ,Point b)
{
return sqrt((b - a) * (b - a)) ;
}
double PointToLine(Point p ,Line L)
{
Point result ;
double t = ((p-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
result.x=L.s.x+(L.e.x-L.s.x)*t ;
result.y=L.s.y+(L.e.y-L.s.y)*t ;
return dist(p , result) ;
}
Point list[MAX] ;
int Stack[MAX] , top ;
bool _cmp(Point p1,Point p2)
{
double tmp = (p1-list[0])^(p2-list[0]);
if(sgn(tmp) > 0)return true;
else if(sgn(tmp) == 0 && sgn(dist(p1,list[0]) - dist(p2,list[0])) <= 0)
return true;
else return false;
}
void anglesort(int n) //输入，并把最左下方的点放在list[0],并且进行极角排序
{
int i,k;
Point p0;
scanf("%lf%lf",&list[0].x,&list[0].y);
p0.x=list[0].x;
p0.y=list[0].y;
k=0;
for(i=1;i<n;i++)
{
scanf("%lf%lf",&list[i].x,&list[i].y);
if( (p0.y>list[i].y) || ((p0.y==list[i].y)&&(p0.x>list[i].x)) )
{
p0.x=list[i].x;
p0.y=list[i].y;
k=i;
}
}
list[k]=list[0];
list[0]=p0;

sort(list+1,list+n,_cmp);
}
void Graham(int n)
{
Point p0;
int k = 0;
p0 = list[0];
//找最下边的一个点
for(int i = 1;i < n;i++)
{
if( (p0.y > list[i].y) || (p0.y == list[i].y && p0.x > list[i].x) )
{
p0 = list[i];
k = i;
}
}
swap(list[k],list[0]);
sort(list+1,list+n,_cmp);
if(n == 1)
{
top = 1;
Stack[0] = 0;
return;
}
if(n == 2)
{
top = 2;
Stack[0] = 0;
Stack[1] = 1;
return ;
}
Stack[0] = 0;
Stack[1] = 1;
top = 2;
for(int i = 2;i < n;i++)
{
while(top > 1 && sgn((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <= 0)
top--;
Stack[top++] = i;
}
//for(int i = 0 ; i < top ; i ++) printf("%d\n" , Stack[i]);
}
double solve()
{
Line ll ;
double x , y , ans , temp;
ans = DBL_MAX ;
ll = Line(list[Stack[0]] , list[Stack[top - 1]]) ;
for(int k = 0 ; k < top ; k ++)
{
if(k != 0 && k != top-1)
temp = max(temp , PointToLine(list[Stack[k]] , ll)) ;
}
ans = min(ans , temp) ;
for(int i = 0 ; i < top - 1 ; i ++)
{
int j = i + 1 ;
ll = Line(list[Stack[i]] , list[Stack[j]]) ;
temp = 0.0 ;
for(int k = 0 ; k < top ; k ++)
{
if(k != i && k != j)
temp = max(temp , PointToLine(list[Stack[k]] , ll)) ;
//cout << temp << endl ;
}
ans = min(ans , temp) ;
}
return ans ;
}
int main()
{
int n , cas = 1 , len;
while(scanf("%d" , &n)!=EOF , n)
{
anglesort(n) ;
Graham(n) ;
printf("Case %d: %.2f\n",cas++, solve() + 0.005);
}
return 0 ;
}
``````

• 本文已收录于以下专栏：

## graham扫描法求凸包

Graham扫描法 凸包问题
• neau2014
• 2015年09月05日 16:16
• 477

## Graham扫描法求点集凸包的原理及代码实现

Graham扫描法求点集凸包的原理及代码实现
• u010251278
• 2016年01月06日 15:51
• 925

## 凸包问题——Graham扫描法

• wy250229163
• 2016年12月01日 11:24
• 613

## 凸包 Graham扫描法

• fzw_captain
• 2015年08月14日 20:29
• 421

## 凸包问题（Graham扫描法）

/** 凸包问题 —— Graham扫描法： 找出点集p[]中最下面的点（有多个时取最左边的），以该点为极点，求出其他所有点的极角， 显然，极角范围为 [0, 180)度，对这些点按极角的升序...
• morgan_xww
• 2011年11月26日 12:37
• 3734

## 凸包--Graham扫描法

• qq_30974369
• 2017年07月30日 21:18
• 283

## 计算几何之凸包----Graham扫描法

• u012328159
• 2016年03月05日 15:15
• 5243

## 凸包模板（分治 or Graham扫描法）

• Jaihk662
• 2016年08月08日 18:21
• 482

## 寻找凸包的graham 扫描法

1,点集Q的凸包(convex hull)是指一个最小凸多边形，满足Q中的点或者在多边形边上或者在其内。  2,凸包最常用的凸包算法是Graham扫描法和Jarvis步进法。  3,Graham扫...
• fivedoumi
• 2012年06月11日 16:40
• 3446

## 浅谈凸包之Andrew 与 Graham

• u012349696
• 2015年04月18日 08:58
• 1122

举报原因： 您举报文章：凸包Graham扫描法->HDU3847 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)