POJ2187->凸包

原创 2016年08月30日 23:38:52

POJ2187->凸包


题意:

给出平面上n个点,求出这些点中距离最大的两个点。

题解:

暴力枚举凸包顶点:

如果逐个枚举,时间复杂度将会相当高,不能满足题目要求。
可以构建一个凸包,再在凸包中枚举各个顶点之间的距离求最大值。

代码:

#include <stdio.h>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <float.h>
using namespace std ;
#define MAX 50005
const double eps = 1e-8 ;
int sgn(double x)
{
    if(fabs(x) < eps) return 0 ;
    if(x < 0) return -1 ;
    else return 1 ;
}
struct Point
{
    double x , y ;
    Point(){}
    Point(double _x , double _y)
    {
        x = _x ; y = _y ;
    }
    Point operator - (const Point &b) const
    {
        return Point(x - b.x , y - b.y) ;
    }
    double operator ^ (const Point &b) const
    {
        return x*b.y - y*b.x ;
    }
    double operator * (const Point &b) const
    {
        return x*b.x + y*b.y ;
    }
};
struct Line
{
    Point s , e ;
    Line(){}
    Line(Point _s , Point _e)
    {
        s = _s ; e = _e ;
    }
};
double xmult(Point p0,Point p1,Point p2) //叉积p0p1 X p0p2
{
    return (p1-p0)^(p2-p0);
}
double dist(Point a ,Point b)
{
    return sqrt((b - a) * (b - a)) ;
}
double PointToLine(Point p ,Line L)
{
    Point result ;
    double t = ((p-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
    result.x=L.s.x+(L.e.x-L.s.x)*t ;
    result.y=L.s.y+(L.e.y-L.s.y)*t ;
    return dist(p , result) ;
}
Point list[MAX] ;
int Stack[MAX] , top ;
bool _cmp(Point p1,Point p2)
{
    double tmp = (p1-list[0])^(p2-list[0]);
    if(sgn(tmp) > 0)return true;
    else if(sgn(tmp) == 0 && sgn(dist(p1,list[0]) - dist(p2,list[0])) <= 0)
        return true;
    else return false;
}
void anglesort(int n) //输入,并把最左下方的点放在list[0],并且进行极角排序
{
    int i,k;
    Point p0;
    scanf("%lf%lf",&list[0].x,&list[0].y);
    p0.x=list[0].x;
    p0.y=list[0].y;
    k=0;
    for(i=1;i<n;i++)
    {
        scanf("%lf%lf",&list[i].x,&list[i].y);
        if( (p0.y>list[i].y) || ((p0.y==list[i].y)&&(p0.x>list[i].x)) )
        {
            p0.x=list[i].x;
            p0.y=list[i].y;
            k=i;
        }
    }
    list[k]=list[0];
    list[0]=p0;

    sort(list+1,list+n,_cmp);
}
void Graham(int n)
{
    Point p0;
    int k = 0;
    p0 = list[0];
    //找最下边的一个点
    for(int i = 1;i < n;i++)
    {
        if( (p0.y > list[i].y) || (p0.y == list[i].y && p0.x > list[i].x) )
        {
            p0 = list[i];
            k = i;
        }
    }
    swap(list[k],list[0]);
    sort(list+1,list+n,_cmp);
    if(n == 1)
    {
        top = 1;
        Stack[0] = 0;
        return;
    }
    if(n == 2)
    {
        top = 2;
        Stack[0] = 0;
        Stack[1] = 1;
        return ;
    }
    Stack[0] = 0;
    Stack[1] = 1;
    top = 2;
    for(int i = 2;i < n;i++)
    {
        while(top > 1 && sgn((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <= 0)
            top--;
        Stack[top++] = i;
    }
}
double solve()
{
    double ans = -1 ,temp;
    ans = dist(list[Stack[0]] , list[Stack[top - 1]]) ;
    for(int i = 0 ; i < top - 1 ; i ++)
    {
        for(int j = i + 1 ; j < top ; j ++)
        {
            temp = dist(list[Stack[i]] , list[Stack[j]]) ;
            ans = max(ans , temp * temp) ;
        }

    }
    return (ans) ;
}
int main()
{
    int n , cas = 1 , len;
    scanf("%d" , &n);
    anglesort(n) ;
    Graham(n) ;
    printf("%.f\n",solve());
    return 0 ;
}

旋转卡壳:

旋转卡壳介绍:
http://www.cnblogs.com/xdruid/archive/2012/07/01/2572303.html
http://blog.csdn.net/hanchengxi/article/details/8639476

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;

struct Point
{
    int x,y;
    Point(int _x = 0, int _y = 0)
    {
        x = _x;
        y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x - b.x, y - b.y);
    }
    int operator ^(const Point &b)const
    {
        return x*b.y - y*b.x;
    }
    int operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
    void input()
    {
        scanf("%d%d",&x,&y);
    }
};
int dist2(Point a,Point b)
{
    return (a-b)*(a-b);
}
const int MAXN = 50010;
Point list[MAXN];
int Stack[MAXN],top;
bool _cmp(Point p1,Point p2)
{
    int tmp = (p1-list[0])^(p2-list[0]);
    if(tmp > 0)return true;
    else if(tmp == 0 && dist2(p1,list[0]) <= dist2(p2,list[0]))
        return true;
    else return false;
}
void Graham(int n)
{
    Point p0;
    int k = 0;
    p0 = list[0];
    for(int i = 1;i < n;i++)
        if(p0.y > list[i].y || (p0.y == list[i].y && p0.x > list[i].x))
        {
            p0 = list[i];
            k = i;
        }
    swap(list[0],list[k]);
    sort(list+1,list+n,_cmp);
    if(n == 1)
    {
        top = 1;
        Stack[0] = 0;
        return;
    }
    if(n == 2)
    {
        top = 2;
        Stack[0] = 0;
        Stack[1] = 1;
        return;
    }
    Stack[0] = 0;
    Stack[1] = 1;
    top = 2;
    for(int i = 2;i < n;i++)
    {
        while(top > 1 && ((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <= 0 )
            top--;
        Stack[top++] = i;
    }
}
//旋转卡壳,求两点间距离平方的最大值
int rotating_calipers(Point p[],int n)
{
    int ans = 0;
    Point v;
    int cur = 1;
    for(int i = 0;i < n;i++)
    {
        v = p[i]-p[(i+1)%n];
        while((v^(p[(cur+1)%n]-p[cur])) < 0)
            cur = (cur+1)%n;
        //printf("%d %d\n",i,cur);
        ans = max(ans,max(dist2(p[i],p[cur]),dist2(p[(i+1)%n],p[(cur+1)%n])));
    }
    return ans;
}
Point p[MAXN];
int main()
{
    int n;
    while(scanf("%d",&n) == 1)
    {
        for(int i = 0;i < n;i++)
            list[i].input();
        Graham(n);
        for(int i = 0;i < top;i++)
            p[i] = list[Stack[i]];
        printf("%d\n",rotating_calipers(p,top));
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ 2187 Beauty Contest(凸包_旋转卡壳之最远点对)

POJ 2187 Beauty Contest(凸包_旋转卡壳之最远点对)

poj 2187(凸包+旋转卡壳)

Beauty Contest Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 33122   Accepted: ...

POJ 2187 —— 凸包 + 旋转卡壳 求多边形的直径

Beauty Contest Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25248  ...
  • zkzxmzk
  • zkzxmzk
  • 2013年10月24日 20:19
  • 486

poj2187Beauty Contest 凸包最大距离

#include #include #include #include #include using namespace std; const int N=60005; inline int...

POJ Beauty Contest 2187 (凸包)

题意:给出n个点的坐标,求距离最远的两个点的距离的平方 分析:暴力肯定超时,裸的凸包 看代码 #include #include #include using namespace std;...

【转载】[Poj 2187] 计算几何之凸包(二) {更高效的算法}

转自:http://www.cnblogs.com/Booble/ 原文链接: http://www.cnblogs.com/Booble/archive/2011/03/10/1980089.h...

POJ 2187 Beauty Contest (凸包&最远点距&旋转卡壳)

http://poj.org/problem?id=2187 思路:算出凸包后枚举凸包上的点。复杂度为O(NlogN+M) 为什么可以枚举? 设坐标的绝对值不超过M,则凸包至多有O(√M)个顶点...

学习笔记----凸包 POJ 2187

最近开始学习凸包,看了一下鹏哥写的通俗易懂啊。。。呵呵,就抄下来了啊、、、地址:http://blog.csdn.net/rowanhaoa/article/details/7874895 凸包的求法...

Poj2187(最远点对距离)凸包+旋转卡壳

题目链接:http://poj.org/problem?id=2187 题意:求出给定点集的最远点对距离 首先知道一点,最远点对一定是在这些点集构成的凸包的边上,所以可以先求出凸包,再枚举凸包上所有点...

Poj 2187 Beauty Contest_旋转凸包卡壳

题意:给你n个坐标,求最远的两点距离 思路:用凸包算法求处,各个定点,再用旋转凸包卡壳 #include #include #include #include using namesp...
  • neng18
  • neng18
  • 2014年03月29日 13:26
  • 667
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ2187->凸包
举报原因:
原因补充:

(最多只允许输入30个字)