POJ2187->凸包

原创 2016年08月30日 23:38:52

POJ2187->凸包


题意:

给出平面上n个点,求出这些点中距离最大的两个点。

题解:

暴力枚举凸包顶点:

如果逐个枚举,时间复杂度将会相当高,不能满足题目要求。
可以构建一个凸包,再在凸包中枚举各个顶点之间的距离求最大值。

代码:

#include <stdio.h>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <float.h>
using namespace std ;
#define MAX 50005
const double eps = 1e-8 ;
int sgn(double x)
{
    if(fabs(x) < eps) return 0 ;
    if(x < 0) return -1 ;
    else return 1 ;
}
struct Point
{
    double x , y ;
    Point(){}
    Point(double _x , double _y)
    {
        x = _x ; y = _y ;
    }
    Point operator - (const Point &b) const
    {
        return Point(x - b.x , y - b.y) ;
    }
    double operator ^ (const Point &b) const
    {
        return x*b.y - y*b.x ;
    }
    double operator * (const Point &b) const
    {
        return x*b.x + y*b.y ;
    }
};
struct Line
{
    Point s , e ;
    Line(){}
    Line(Point _s , Point _e)
    {
        s = _s ; e = _e ;
    }
};
double xmult(Point p0,Point p1,Point p2) //叉积p0p1 X p0p2
{
    return (p1-p0)^(p2-p0);
}
double dist(Point a ,Point b)
{
    return sqrt((b - a) * (b - a)) ;
}
double PointToLine(Point p ,Line L)
{
    Point result ;
    double t = ((p-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
    result.x=L.s.x+(L.e.x-L.s.x)*t ;
    result.y=L.s.y+(L.e.y-L.s.y)*t ;
    return dist(p , result) ;
}
Point list[MAX] ;
int Stack[MAX] , top ;
bool _cmp(Point p1,Point p2)
{
    double tmp = (p1-list[0])^(p2-list[0]);
    if(sgn(tmp) > 0)return true;
    else if(sgn(tmp) == 0 && sgn(dist(p1,list[0]) - dist(p2,list[0])) <= 0)
        return true;
    else return false;
}
void anglesort(int n) //输入,并把最左下方的点放在list[0],并且进行极角排序
{
    int i,k;
    Point p0;
    scanf("%lf%lf",&list[0].x,&list[0].y);
    p0.x=list[0].x;
    p0.y=list[0].y;
    k=0;
    for(i=1;i<n;i++)
    {
        scanf("%lf%lf",&list[i].x,&list[i].y);
        if( (p0.y>list[i].y) || ((p0.y==list[i].y)&&(p0.x>list[i].x)) )
        {
            p0.x=list[i].x;
            p0.y=list[i].y;
            k=i;
        }
    }
    list[k]=list[0];
    list[0]=p0;

    sort(list+1,list+n,_cmp);
}
void Graham(int n)
{
    Point p0;
    int k = 0;
    p0 = list[0];
    //找最下边的一个点
    for(int i = 1;i < n;i++)
    {
        if( (p0.y > list[i].y) || (p0.y == list[i].y && p0.x > list[i].x) )
        {
            p0 = list[i];
            k = i;
        }
    }
    swap(list[k],list[0]);
    sort(list+1,list+n,_cmp);
    if(n == 1)
    {
        top = 1;
        Stack[0] = 0;
        return;
    }
    if(n == 2)
    {
        top = 2;
        Stack[0] = 0;
        Stack[1] = 1;
        return ;
    }
    Stack[0] = 0;
    Stack[1] = 1;
    top = 2;
    for(int i = 2;i < n;i++)
    {
        while(top > 1 && sgn((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <= 0)
            top--;
        Stack[top++] = i;
    }
}
double solve()
{
    double ans = -1 ,temp;
    ans = dist(list[Stack[0]] , list[Stack[top - 1]]) ;
    for(int i = 0 ; i < top - 1 ; i ++)
    {
        for(int j = i + 1 ; j < top ; j ++)
        {
            temp = dist(list[Stack[i]] , list[Stack[j]]) ;
            ans = max(ans , temp * temp) ;
        }

    }
    return (ans) ;
}
int main()
{
    int n , cas = 1 , len;
    scanf("%d" , &n);
    anglesort(n) ;
    Graham(n) ;
    printf("%.f\n",solve());
    return 0 ;
}

旋转卡壳:

旋转卡壳介绍:
http://www.cnblogs.com/xdruid/archive/2012/07/01/2572303.html
http://blog.csdn.net/hanchengxi/article/details/8639476

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;

struct Point
{
    int x,y;
    Point(int _x = 0, int _y = 0)
    {
        x = _x;
        y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x - b.x, y - b.y);
    }
    int operator ^(const Point &b)const
    {
        return x*b.y - y*b.x;
    }
    int operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
    void input()
    {
        scanf("%d%d",&x,&y);
    }
};
int dist2(Point a,Point b)
{
    return (a-b)*(a-b);
}
const int MAXN = 50010;
Point list[MAXN];
int Stack[MAXN],top;
bool _cmp(Point p1,Point p2)
{
    int tmp = (p1-list[0])^(p2-list[0]);
    if(tmp > 0)return true;
    else if(tmp == 0 && dist2(p1,list[0]) <= dist2(p2,list[0]))
        return true;
    else return false;
}
void Graham(int n)
{
    Point p0;
    int k = 0;
    p0 = list[0];
    for(int i = 1;i < n;i++)
        if(p0.y > list[i].y || (p0.y == list[i].y && p0.x > list[i].x))
        {
            p0 = list[i];
            k = i;
        }
    swap(list[0],list[k]);
    sort(list+1,list+n,_cmp);
    if(n == 1)
    {
        top = 1;
        Stack[0] = 0;
        return;
    }
    if(n == 2)
    {
        top = 2;
        Stack[0] = 0;
        Stack[1] = 1;
        return;
    }
    Stack[0] = 0;
    Stack[1] = 1;
    top = 2;
    for(int i = 2;i < n;i++)
    {
        while(top > 1 && ((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <= 0 )
            top--;
        Stack[top++] = i;
    }
}
//旋转卡壳,求两点间距离平方的最大值
int rotating_calipers(Point p[],int n)
{
    int ans = 0;
    Point v;
    int cur = 1;
    for(int i = 0;i < n;i++)
    {
        v = p[i]-p[(i+1)%n];
        while((v^(p[(cur+1)%n]-p[cur])) < 0)
            cur = (cur+1)%n;
        //printf("%d %d\n",i,cur);
        ans = max(ans,max(dist2(p[i],p[cur]),dist2(p[(i+1)%n],p[(cur+1)%n])));
    }
    return ans;
}
Point p[MAXN];
int main()
{
    int n;
    while(scanf("%d",&n) == 1)
    {
        for(int i = 0;i < n;i++)
            list[i].input();
        Graham(n);
        for(int i = 0;i < top;i++)
            p[i] = list[Stack[i]];
        printf("%d\n",rotating_calipers(p,top));
    }
    return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。

最小凸包算法(Convex Hull)(1)-Graham扫描法 -计算几何-算法导论

基本问题:平面上有n个点p1,p2, ..., pn, 要求求出一个面积最小的凸多边形,使得这个多边形包含所有平面上的点。 根据算法导论上提供的两个方法做一些介绍:算法1:Graham扫描法下面直接给...
  • suwei19870312
  • suwei19870312
  • 2010年03月27日 16:19
  • 8980

解凸包问题5种算法

转载原文:http://blog.csdn.net/bone_ace/article/details/46239187 前言: 首先,什么是凸包?  定义:对于平面上的一个点集合(有限或无限),如果...
  • Touch_Dream
  • Touch_Dream
  • 2016年10月05日 16:40
  • 1974

凸包问题的五种解法

前言:首先,什么是凸包? 假设平面上有p0~p12共13个点,过某些点作一个多边形,使这个多边形能把所有点都“包”起来。当这个多边形是凸多边形的时候,我们就叫它“凸包”。如下图: 然后,什么是凸包...
  • Bone_ACE
  • Bone_ACE
  • 2015年05月29日 17:58
  • 25982

【凸包性质】 POJ 1228 Grandpa's Estate

Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12470 ...
  • q79186954
  • q79186954
  • 2016年07月06日 20:05
  • 838

python 解决凸包问题

最近在看python的算法书,之前在年前买的书,一直在工作间隙的时候,学习充电,终于看到这本书,但是确实又有点难,感觉作者写的代码太炫技 了,有时候注释也不怎么能看懂,终于想到一个方法,就是里面说的算...
  • xx5595480
  • xx5595480
  • 2017年02月08日 21:48
  • 1153

hdu 1348 Wall 凸包模板题

#include #include #include #include #include #include using namespace std; const int maxn=1010...
  • a601025382s
  • a601025382s
  • 2013年09月13日 19:09
  • 2916

凸包python实现

# -*- coding: utf-8 -*- import turtle import random import time f=open('point.txt','w') for i in ran...
  • pkucbj
  • pkucbj
  • 2013年08月05日 13:05
  • 1499

动态凸包

动态凸包时间限制: 5 Sec 内存限制: 256 MB题目描述 给出一个点集pset,按顺序将点pi(1...
  • wcy_1122
  • wcy_1122
  • 2015年12月07日 20:14
  • 973

凸包算法(二)--凸包面积

 凸包面积算法1.选取p0作为y坐标最小的点,如果y坐标相等,选取x坐标最小的点2.对剩余的点相对与p0点的极角进行排序(比较叉积 )3.去除极角相等的点,即距离最远的点4.初始化堆栈5.折线段拐向判...
  • liufei_learning
  • liufei_learning
  • 2010年10月20日 23:44
  • 5895

凸包介绍

推荐一个介绍凸包算法的好博客,本文转自:http://www.cnblogs.com/Booble/archive/2011/03/10/1980089.html ===...
  • niuox
  • niuox
  • 2013年02月26日 14:23
  • 1246
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ2187->凸包
举报原因:
原因补充:

(最多只允许输入30个字)