第六周实验

原创 2012年03月28日 22:10:57

/* (程序头部注释开始)

* 程序的版权和版本声明部分

* Copyright (c) 2011, 烟台大学计算机学院学生

* All rights reserved.

* 文件名称:                             

* 作    者:   李冠绩               

* 完成日期:   2012   年  3 月   28  日

* 版 本 号:          

* 对任务及求解方法的描述部分

* 输入描述:

* 问题描述:设计平面坐标点类,计算两点之间的距离,到原点的距离,关于坐标轴和原点的对称点等,其中使用了枚举

* 程序输出:

* 程序头部的注释结束

*/ 

注:由于没安装vs2008,用的vc。。见谅

 

#include <iostream>
#include <Cmath>
using namespace std;

enum SymmetricStyle { axisx,axisy,point};//分别表示按x轴, y轴, 原点对称
class CPoint
{
private:
 double x;  // 横坐标
 double y;  // 纵坐标
public:
 CPoint(double xx=0,double yy=0);
 double Distance(CPoint p) const;   // 两点之间的距离
 double Distance0() const;          // 到原点的距离
 CPoint SymmetricAxis(SymmetricStyle style) const;   // 返回对称点
 void input();  //以x,y 形式输入坐标点
 void output(); //以(x,y) 形式输出坐标点
};

CPoint::CPoint(double xx,double yy)
{
 x=xx;
 y=yy;
}

// 输入坐标点
void CPoint::input()
{
 char m;
 cout<<"请输入坐标点(格式为x,y ):";
 while(1)
 {
  cin>>x>>m>>y;
  if (m!=',')
  cout<<"输入的格式不正确,请重新输入";
  break;
 }
}

// 输出坐标点
void CPoint::output()
{
 cout<<"("<<x<<", "<<y<<")"<<endl;
}

// 求两点之间的距离
double CPoint::Distance(CPoint p) const
{
 double d;
 d=sqrt((p.x-x)*(p.x-x)+(p.y-y)*(p.y-y));
 return d;
}

// 求点到原点的距离
double CPoint::Distance0() const
{
 double d;
 d=sqrt(x*x+y*y);
 return d;
}

// 求对称点
CPoint CPoint::SymmetricAxis(SymmetricStyle style) const
{
 CPoint p(this->x,this->y);
 switch(style)
 {
 case axisx:
  p.y=-y; break;
 case axisy:
  p.x=-x; break;
 case point:
  p.x=-x;p.y=-y;
 }
 return p;
}

void main( )
{
 double distance;
 CPoint p1,p2,p;
 cout<<"第1个点p1,";
 p1.input();
 cout<<"第2个点p2,";
 p2.input();
 distance=p1.Distance(p2);
 cout<<"两点之间的距离为:"<<distance<<endl;
 distance=p1.Distance0();
 cout<<"p1到原点的距离为:"<<distance<<endl;
 p=p1.SymmetricAxis(axisx);
 cout<<"p1关于x轴的对称点为:";
 p.output();
 p=p1.SymmetricAxis(axisy);
 cout<<"p1关于y轴的对称点为:";
 p.output();
 p=p1.SymmetricAxis(point);
 cout<<"p1关于原点的对称点为:";
 p.output();
 system("pause");
}

Coursera—machine learning(Andrew Ng)第六周编程作业

linearRegCostFunction.m function [J, grad] = linearRegCostFunction(X, y, theta, lambda) %LINEARREGC...
  • ccblogger
  • ccblogger
  • 2017年11月24日 15:33
  • 354

coursera机器学习课程第六周——课程笔记

本周的内容主要分为两部分,第一部分:主要内容是偏差、方差以及学习曲线相关的诊断方法,为改善机器学习算法的决策提供依据;第二部分:主要内容是机器学习算法的错误分析以及数值评估标准:准确率(交叉验证集的误...
  • ccblogger
  • ccblogger
  • 2017年11月27日 17:47
  • 163

coursera Machine Learning 第六周 测验quiz1答案解析 Advice for Applying Machine Learning

1.选择B 解析:通过看学习曲线,结合课上所讲就是高方差的表现。 2.选择BC 解析:题意是做图片分类,结果对测试集效果不好,但是能很好地符合训练集,如何才能改善算法。明显是过拟合的结果,即高方差...
  • sinat_39805237
  • sinat_39805237
  • 2017年12月12日 20:43
  • 120

NG机器学习第六周:关于模型的调优选择

评判一个模型:    回归:  J(Θ) 的大小,越小越好 逻辑回归分类:  用错误率 err( hΘ(x)-y)来衡量。 选择模型: 分别用几次方程拟合比较合适,  把数据集分为:   训练集, 交...
  • u012374510
  • u012374510
  • 2017年03月19日 14:32
  • 282

Coursera吴恩达机器学习课程 总结笔记及作业代码——第6周有关机器学习的小建议

1.1 Deciding what to try next当你调试你的学习算法时,当面对测试集你的算法效果不佳时,你会怎么做呢? 获得更多的训练样本? 尝试更少的特征? 尝试获取附加的特征? 尝试增加...
  • qq_27008079
  • qq_27008079
  • 2017年05月21日 15:58
  • 4498

machine-learning第六周 上机作业

1、如何评估算法好坏:高偏差与高方差的问题; 2、当某个集合中,一个类别远小于另一个类别的时候(如患癌),如何评估在面对偏斜类(Skewed classes)的算法好坏:查准率和召回率; 3、如何选择...
  • dialoal
  • dialoal
  • 2016年02月02日 16:21
  • 1326

【数据结构】第三周研讨题

一、研讨题目: 1.单链表经典应用之一元多项式加法、乘法等运算 2.一元多项式加法、乘法等运算在顺序结构上的实现 3.静态链表的概念和部分实现 二、内容整理: 1.单链表经典应用之一元多项式...
  • u011507007
  • u011507007
  • 2014年06月04日 22:10
  • 593

Coursera机器学习-第六周-Advice for Applying Machine Learning

Evaluating a Learning Algorithm Desciding What to Try Next Evaluating a Hypothesis Model...
  • dingchenxixi
  • dingchenxixi
  • 2016年06月01日 07:58
  • 2008

第六周实验之三角形

/* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2011, 烟台大学计算机学院学生 * All rights reserved. * 文件...
  • SheSawHim
  • SheSawHim
  • 2012年03月28日 22:19
  • 449

第六周实验三

/* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2011, 烟台大学计算机学院学生  * All rights reserved. * 文件名...
  • pengzhikang
  • pengzhikang
  • 2012年03月28日 19:29
  • 244
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第六周实验
举报原因:
原因补充:

(最多只允许输入30个字)