天平难题(Mobile Computing,UVa 1354)

原创 2015年11月18日 18:32:34

原题链接

分析:思路十分巧妙,将挂坠和木棍都作为结点,则一个天平对应一个二叉树;之后通过之前学过的二进制法枚举子集的形式对子树集进行枚举,最后选取最优解即可!

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<string>
#include<map>
#include<cmath>
#include<sstream>
#include<queue>
#include<cctype>
using namespace std;
typedef long long ll;

const int MAX = 1 << 6;
double ans;
int vis[MAX];
// sumw保存每种子集情况的重量
double sumw[MAX]; 
double w[6];
struct Node {
        double l,r;
        Node() {}
        Node(double ll,double rr):l(ll),r(rr) {}
};
vector<Node> p[MAX];
int Bitcount(int s) {
        int ans = 0;
        for(int i=0;i<6;i++)
                if(s & (1 << i)) ans++;
        return ans;
}
void dfs(int s) {
        if(vis[s]) return;
        vis[s] = 1;
		// 对枚举情况进行判断,若只有1个石头则表示其为叶子,左右两端均为0
        if(Bitcount(s) == 1) {
                p[s].push_back(Node(0,0));
                return;
        }
		// 通过二进制法对每种情况进行枚举,l为每次枚举的左子树集,r为l对于s的补集情况
        for(int l=(s-1)&s;l>0;l=(l-1)&s) {
                int r = s ^ l;
                dfs(l);
                dfs(r);
                for(int i=0;i<p[l].size();i++)
                for(int j=0;j<p[r].size();j++) {
				// 对s的最左端进行判断,选取左天平的最左端和右天平最左端的最小值
                double ll = min(-sumw[r] / (sumw[l] + sumw[r]) + p[l][i].l, sumw[l] / (sumw[l] + sumw[r]) + p[r][j].l);
				// 对s的最右端进行判断,选取左天平的最右端和右天平最右端的最大值
                double rr = max(sumw[l] / (sumw[l] + sumw[r]) + p[r][j].r, -sumw[r] / (sumw[l] + sumw[r]) + p[l][i].r);
                        p[s].push_back(Node(ll,rr));
                }
        }
}
void solve() {
        double r;
        int n;
        scanf("%lf%d",&r,&n);
        memset(sumw,0,sizeof(sumw));
        memset(vis,0,sizeof(vis));
        memset(p,0,sizeof(p));
		// 对所有情况的重量进行初始化
        for(int i=0;i<n;i++) scanf("%lf",w+i);
        for(int i=0;i<(1<<n);i++)
                for(int j=0;j<n;j++)
                if(i & (1 << j)) sumw[i] += w[j];
        ans = -1;
        int s = (1 << n) - 1;
        dfs(s);
        for(int i=0;i<p[s].size();i++)
		// 选取所有情况下满足的最优解
        if(p[s][i].r - p[s][i].l < r)
        if(p[s][i].r - p[s][i].l > ans) ans = p[s][i].r - p[s][i].l;
        if(ans == -1) printf("-1\n");
        else printf("%.10lf\n",ans);

}
int main() {
        int T;
        while(~scanf("%d",&T) && T) {
			while(T--) {
                solve();
			}
        }
        return 0;
}


相关文章推荐

搜索 【uva1354】 Mobile Computing (练习题7-7 天平难题)

7-7天平难题(Mobile Computing,uva 1354) (mobile.cpp,Time Limit:3000MS )题目描述: 给出房间的宽度r和s个挂坠的重量wi,设计一个尽量宽...
  • Todobe
  • Todobe
  • 2017年01月07日 11:21
  • 276

uva1354 天平难题 位枚举子集

1. &表示交集,^表示差集,|表示并集。 2. 利用交集是否为0还可以判断是否存在包含关系。 3. 递归枚举...

【动态规划】【状态压缩DP】[UVa 1354]Mobile Computing

其实就是枚举一下每一次左边的用那些右边的用那些,处理一下当前所有组合的左端点和又短点就行了#include #include #include #include #include using...

uva 1354——Mobile Computing

There is a mysterious planet called Yaen, whose space is 2-dimensional. There are many beautiful sto...
  • bobodem
  • bobodem
  • 2015年10月24日 19:50
  • 328

UVA1354 Mobile Computing(DFS)

题目大意:给出房间宽度,重物个数n(n 思路:显然的搜索题。由于重物的个数最多只有6个,因此我们可以状态压缩,用一个01串表示。然后暴力枚举左右天平的情况,用记忆化搜索。 #include #in...
  • cqbzwja
  • cqbzwja
  • 2015年07月20日 08:36
  • 250

UVA - 1354 Mobile Computing: 枚举二叉树 位运算枚举子集,枚举子集的子集 回溯

题目点此跳转 There is a mysterious planet called Yaen, whose space is 2-dimensional. There are many beau...
  • a27038
  • a27038
  • 2017年07月19日 14:27
  • 125

例题7-7 UVA 1354 Mobile Computing (搜索+二叉树(类哈夫曼树))

思路: 想一想就可以知道,一个结点要么有两个儿子,要么没儿子。 那么这就很像哈夫曼树,因此我们可以枚举所有的哈夫曼树(任意枚举两个不同的结点来合并) 然后从根结点开始遍历二叉树,在遍历的同时,来...

UVa 1354 - Mobile Computing(二叉树 + DFS)

题目链接https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=...

UVa 1354 - Mobile Computing <枚举+二叉树>

There is a mysterious planet called Yaen, whose space is 2-dimensional. There are many beautiful sto...
  • kun768
  • kun768
  • 2015年01月29日 16:03
  • 874

UVa839-Not so Mobile (天平)

UVa839-Not so Mobile (天平) 输入一个树状天平,根据力矩相等原则判断是否平衡。所谓力矩相等,就是W1D1=W2D2,其中W1,W2分别为左右两边砝码的重量,D为距离。  采用递归...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:天平难题(Mobile Computing,UVa 1354)
举报原因:
原因补充:

(最多只允许输入30个字)