n-gram python实现(基于sklearn)

# n-gram
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pd
import jieba
data = ["他用报话机向上级呼喊:“为了祖国,为了胜利,向我开炮!向我开炮!",
        "记者:你怎么会说出那番话?",
        "韦昌进:我只是觉得,对准我自己打,才有可能把上了我哨位的这些敌人打死,或者打下去。"]

data = [" ".join(jieba.lcut(e)) for e in data] # 分词,并用" "连接

vec = CountVectorizer(min_df=1, ngram_range=(1,2)) 
# ngram_range=(1,1) 表示 unigram, ngram_range=(2,2) 表示 bigram, ngram_range=(3,3) 表示 thirgram
X = vec.fit_transform(data) # transform text to metrix
vec.get_feature_names() # get features
[u’\u4e0a\u7ea7’, u’\u4e0a\u7ea7 \u547c\u558a’, u’\u4e0b\u53bb’, u’\u4e3a\u4e86’, u’\u4e3a\u4e86 \u7956\u56fd’, u’\u4e3a\u4e86 \u80dc\u5229’, u’\u53ea\u662f’, u’\u53ea\u662f \u89c9\u5f97’, u’\u53ef\u80fd’, u’\u53ef\u80fd \u54e8\u4f4d’, u’\u547c\u558a’, u’\u547c\u558a \u4e3a\u4e86’, u’\u54e8\u4f4d’, u’\u54e8\u4f4d \u8fd9\u4e9b’, u’\u5bf9\u51c6’, u’\u5bf9\u51c6 \u81ea\u5df1’, u’\u5f00\u70ae’, u’\u5f00\u70ae \u5f00\u70ae’, u’\u600e\u4e48’, u’\u600e\u4e48 \u8bf4\u51fa’, u’\u6216\u8005’, u’\u6216\u8005 \u4e0b\u53bb’, u’\u6253\u6b7b’, u’\u6253\u6b7b \u6216\u8005’, u’\u62a5\u8bdd\u673a’, u’\u62a5\u8bdd\u673a \u4e0a\u7ea7’, u’\u654c\u4eba’, u’\u654c\u4eba \u6253\u6b7b’, u’\u756a\u8bdd’, u’\u7956\u56fd’, u’\u7956\u56fd \u4e3a\u4e86’, u’\u80dc\u5229’, u’\u80dc\u5229 \u5f00\u70ae’, u’\u81ea\u5df1’, u’\u81ea\u5df1 \u53ef\u80fd’, u’\u89c9\u5f97’, u’\u89c9\u5f97 \u5bf9\u51c6’, u’\u8bb0\u8005’, u’\u8bb0\u8005 \u600e\u4e48’, u’\u8bf4\u51fa’, u’\u8bf4\u51fa \u756a\u8bdd’, u’\u8fd9\u4e9b’, u’\u8fd9\u4e9b \u654c\u4eba’, u’\u97e6\u660c\u8fdb’, u’\u97e6\u660c\u8fdb \u53ea\u662f’]
X.toarray()
array([[1, 1, 0, 2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1]])
df = pd.DataFrame(X.toarray(), columns=vec.get_feature_names()) # to DataFrame
df.head()
上级上级 呼喊下去为了为了 祖国为了 胜利只是只是 觉得可能可能 哨位觉得觉得 对准记者记者 怎么说出说出 番话这些这些 敌人韦昌进韦昌进 只是
011021100000000000000
100000000000011110000
200100011111100001111

3 rows × 45 columns

  • 9
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值