关闭

zoj:1456Minimum Transport Cost

标签: path算法c
216人阅读 评论(0) 收藏 举报
分类:

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1456

题目大意:有N个城市,两个城市之间要么有一条运输路线,要么没有。现在有一些货物需要从一个城市运往另一个城市。运输费用包含两部分:通过两个城市之间运输线路的费用,以及通过一个城市时的纳税(起点城市和目标城市除外)。要求输出费用最小,并且路径字典需序最小的线路。

这题最让人郁闷的地方就是路径的字典序,这个地方让我wrong了好几回,所谓字典序就是,如果有1-->2-->和1-->3两条路可选当输出1-->2-->3。采用的是bellman-ford算法,当判断父节点的更换的时候,就回溯查看对比路径序列,具体实现如下:

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<stack>
using namespace std ;

const int INF = 100000000 ;

const int maxn = 1000 ;


int map[maxn][maxn] ;//存放对应的图
int dist[maxn] ;//存放距离
int path[maxn] ;//存放路径
int value[maxn];//存放每个城市对应的额外花费

int source ;
int end    ;
int n ;

void bellman(int s) ;
bool judge(int a , int b) ;

void print(int s) ;

int main()
{
//	freopen("data.txt" , "r" , stdin) ;

	while(scanf("%d",&n)!=EOF&&n)
	{
		int i ;
		int j ;
		
		memset(map ,  0 , sizeof(map)) ;
		memset(value , 0 , sizeof(value)) ;

		for(i = 0 ; i < n ; i ++)
		{
			for(j = 0 ; j < n ; j ++)
			{
				scanf("%d" , &map[i][j]) ;
			}
		}

		for(i = 0 ; i < n ; i ++)
		{
			scanf("%d" , &value[i]) ;
		}
		
		while(scanf("%d %d" , &source , &end) &&(source!=-1&&end!=-1))
		{
			bellman(source - 1) ;
			
			printf("From %d to %d :\n", source , end) ;
			print(end-1) ;
			printf("Total cost : %d\n" , dist[end - 1]) ;
			printf("\n") ;
		}
	}
	return 0 ;
}

void bellman(int s)
{
	int i ;
	int j ;
	int k ;
	//初始化,每个点的到源点的距离
	for(i = 0 ; i < maxn ; i ++)
	{
		if(map[s][i] != -1)
		{
			dist[i] = map[s][i] ;
			path[i] = s ;
		}
		else
		{
			dist[i] = INF ;
			path[i] = -1  ;
		}
	}
	dist[s] = 0 ;
	path[s] = -1 ;
	
	for(i = 2 ; i < n ; i ++)//从dist(1)[j]递推出dist(2)[j]......dist(n-1)[j]
	{
		for(j = 0 ; j < n ; j ++)//修改每个点的dist以及path
		{
			if(j != s)//考虑其他的顶点
			{
				for(k = 0 ; k < n ; k ++)
				{
					//顶点k到顶点j有直接路径,即计算出,经过k的路径到顶点j的最短路径
					if(map[k][j] >= 0 && value[k] + dist[k] + map[k][j] < dist[j])
					{
						dist[j] = dist[k] + value[k] + map[k][j] ;
						path[j] = k ;
					}
					//这里需要注意,在这里错了n多回,对于节点的父节点的更新,这里要从源点出发一次检查更新,
					else if(map[k][j] >= 0 && value[k] + dist[k] + map[k][j] == dist[j])
					{
						if(judge(k , j))
							path[j] = k ;
					}
				}
			}
		}
	}
}
//用栈保存临时的数据然后输出
void print(int s)
{
	stack<int> qs ;
	
	
	while(s!=-1)
	{
		qs.push(s) ;
		s = path[s] ;
	}

	printf("Path: ") ;

	while(qs.size()!=1)
	{
		printf("%d-->", qs.top() + 1 ) ;
		qs.pop() ;
	}

	printf("%d\n" , qs.top() + 1) ;
	qs.pop() ;
}

bool judge(int a  , int b)
{
	//这里用栈来存放相应的队列
	stack<int> c ;
	stack<int> d ;

	while(a!=-1)
	{
		c.push(a) ;
		a = path[a] ;
	}
	int x = path[b] ;
	while(x!=-1)
	{
		d.push(x) ;
		x = path[x] ;
	}
	//需要改变父节点的条件
	while(!c.empty() && !d.empty())
	{
		if(c.top() < d.top())
		{
			return true ;
		}
		else if(c.top()==d.top())
		{
			c.pop() ;
			d.pop() ;
		}
		else{
			return false ;
		}
	}
	if(c.empty() && !d.empty())
	{
		return b < d.top() ;
	}
	else if(!c.empty() && d.empty())
	{
		return b > c.top() ;
	}

	return true ;
}



   
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:91077次
    • 积分:2424
    • 等级:
    • 排名:第15302名
    • 原创:167篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条