2015湖南省选集训DAY5——work(BZOJ4177)

原创 2015年07月08日 15:54:57

Description

Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元,每只羊可以卖b[i]元,为了防止牛羊之间相互影响,Mike找到了m条规律,每条规律给出一个三元组(i, j, k)表示如果第i个围栏和第j个围栏养的是不同的动物,那么Mike就需要花费k的代价请人帮忙处理牛羊之间的影响。不过同时Mike也发现k条特殊的规则(S, a, b),表示如果S中所有牲畜围栏中都养的是动物a,那么Mike可以获得b的额外收入。现在Mike想知道他该在哪些围栏中饲养什么动物才能使得总收益最大,为了简化问题,你只需要输出最大收益。

Input

第一行三个整数n、m、k,表示一共有n个围栏,m条规律,k条规则。

第二行有n个整数,表示a[i]。

第三行有n个整数,表示b[i]。

接下来m行,每行有三个整数(i, j, k)表示一条规则。

再接下来k行,每行一开始有三个整数t、a和b,表示一条规则(S, a, b),其中S的大小为t,接下来

t个整数表示S中的元素(a为0表示全为牛,a为1表示全为羊)。

Output

输出一个整数ans,表示最大收益。

Sample Input

4 2 1

1 2 3 1

2 3 1 2

1 2 3

1 3 2

2 0 100 1 2

Sample Output

108

HINT

对于100的数据,n <= 5000, m <= 5000, k <= 5000, a = 0 or 1。

题解与吐槽:

傻逼网络流
然后听取了tkd的建议拆了点。。。
wa后发现拆点毫无意义而且会影响正确性

从源点向每个点连一条流量为ai的边,每个点向汇点连一条流量为bi的边。于是每一种割法对应一种选择。然后考虑第二种限制,我们向有关系的两点互连流量为k的边,意会一下。第三种的话我们再加上一个新点,如果要求是割掉集合中的点与汇点的边,于是从源点向这个点连流量为收益大小的边,在从这个点向集合中的点连流量无穷大的边;另一种情况同理。于是就完了。

请无视掉那个奇怪的typedef,其实它的含义是tkd神犇

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef double db;
typedef long long tkdsb;

const tkdsb inf=0x3f3f3f3f3f3f;

tkdsb getint()
{
    char c=getchar();
    tkdsb f=1,g=0;
    while(c>'9' || c<'0'){if(c=='-')f=-1;c=getchar();}
    while(c<='9' && c>='0')g=(g<<3)+(g<<1)+c-'0',c=getchar();
    return f*g;
}

const tkdsb maxn=40005;

tkdsb n,m,k;

struct edge{
    tkdsb from,to,cap;
};

tkdsb s,t;

vector<tkdsb> g[maxn];
vector<edge> eds;

void addedge(tkdsb from,tkdsb to,tkdsb cap)
{
    g[from].push_back(eds.size());
    eds.push_back((edge){from,to,cap});
    g[to].push_back(eds.size());
    eds.push_back((edge){to,from,0});
}

tkdsb d[maxn];
queue<tkdsb> q;

bool bfs()
{
    memset(d,-1,sizeof d);
    d[s]=0;
    q.push(s);
    while(!q.empty())
    {
        tkdsb x=q.front();q.pop();
        for(vector<tkdsb>::iterator it=g[x].begin();it!=g[x].end();it++)
        {
            edge e=eds[*it];
            if(d[e.to]==-1 && e.cap>0)
            {
                d[e.to]=d[x]+1;
                q.push(e.to);
            }
        }
    }
    return d[t]!=-1;
}

tkdsb cur[maxn];

tkdsb dfs(tkdsb x,tkdsb f)
{
    if(x==t || f==0)return f;
    tkdsb used=0;
    tkdsb temp;

    for(tkdsb i=cur[x];i<g[x].size();i++)
    {
        edge e=eds[g[x][i]];
        if(d[e.to]==d[x]+1 && e.cap)
        {
            temp=dfs(e.to,min(e.cap,f-used));
            cur[x]=i;
            eds[g[x][i]].cap-=temp;
            eds[(g[x][i])^1].cap+=temp;
            used+=temp;
            if(used==f)return used;
        }
    }
    if(used==0)d[x]=-1;
    return used;
}

tkdsb dinic()
{
    tkdsb res=0;
    while(bfs())
    {
        memset(cur,0,sizeof cur);
        res+=dfs(s,inf);
    }
    return res; 
}

//expected score 100

int main()
{
//  freopen("work.in","r",stdin);
//  freopen("work.out","w",stdout);

    n=getint();
    m=getint();
    k=getint();

    s=0;
    t=maxn-1;

    tkdsb x,y;
    tkdsb z;
    tkdsb res=0;

    for(tkdsb i=1;i<=n;i++)
    {
        x=getint();
        addedge(s,i,x);
        res+=x;
    }
    for(tkdsb i=1;i<=n;i++)
    {
        x=getint();
        addedge(i,t,x);
        res+=x;
    }
    for(tkdsb i=1;i<=m;i++)
    {
        x=getint();
        y=getint();
        z=getint();

        addedge(x,y,z);
        addedge(y,x,z);
    }

    tkdsb temp;

    for(tkdsb i=1;i<=k;i++)
    {
        temp=getint();
        x=getint();
        y=getint();
        res+=y;
        if(x==1)
        {
            addedge(i+n,t,y);
            for(tkdsb j=1;j<=temp;j++)
            {
                z=getint();
                addedge(z,i+n,inf);
            }
        }
        else
        {
            addedge(s,i+n,y);
            for(tkdsb j=1;j<=temp;j++)
            {
                z=getint();
                addedge(n+i,z,inf);
            }
        }       
    }
    res-=dinic();
    printf("%lld\n",res);

    return 0;
}

湖南集训 & HNOI2016 总结

湖南集训收获了很多,也认识了很多大神 滚出来了20多天,一共13场比赛,有一些发挥了自己的水平,但更多的比赛却是因为自己的做题策略不断地狗带。幸好HNOI之前的那天下午刷掉了一道树状数组套主席树之后...
  • BPM136
  • BPM136
  • 2016年04月20日 11:43
  • 739

2015湖南省队集训DAY3——Light

Light【问题描述】“若是万一琪露诺(俗称 rhl)进行攻击,什么都好,冷静地回答她的问题来吸引 对方表现出兴趣的话,那就慢慢地反问。在她考虑答案的时候,趁机逃吧。就算是很简 问题,她一定也答不...

2015湖南省队集训DAY6——B题(BZOJ4179)

题面挺扯的,我就直接说人话算了。 题目大意:给你若干个病毒串,问你能不能构造出长度大于n的字符串使其中不出现任何一个字符串。 多组数据,总文件大小小于1M 题解: 联动:BZOJ2938 基...

2015湖南省队集训DAY8——梦工厂

梦工厂 (yume.cpp/c/pas)Time Limit: 1 s Memory Limit: 128 M 问题描述「有时候用烂了的名字也会别有深意」 ——摘自EN 语录 “这里是...

湖南2015省队集训(bzoj4174)tty的求助

文章来自我的新博客题外话:    ~~~~当时我们老师要我们三个人出一套题目给 noinoi 集训,然后我们当时就吓尿了!!!各种担心出的题目太水被秒。。。。。然而事实上效果还不错,只有 yytyyt...

[bzoj4927][SDOI省队集训2017]diyiti

题目大意在一个长度为n的数列中找出六个数,使得可以把它们分成四组,每组的和均相等。求方案数。XJB做只有1+1+1+3或1+1+2+2两种拆分。 先预处理two[x]表示找出两个数和为x的方案数,以...

[计数][容斥] LOJ#6065 || BZOJ4927 && 2017 山东一轮集训 Day3. 第一题

因为要选6根木棒,发现肯定是1,1,2,2或1,1,1,3形式。 可以枚举2和3的部分,然后推一推,容斥容斥就可以了 但是细节贼多#include #include #include #in...
  • Coldef
  • Coldef
  • 2017年07月11日 17:48
  • 283

【BZOJ2839】集合计数,容斥原理

.

[树的同构][二分][可并堆维护哈希] LOJ#6066 || BZOJ4928 && 2017 山东一轮集训 Day3. 第二题

这题一看就可以二分 那么解决这题的关键就变成了怎么对树进行哈希,以及怎么快速维护哈希值 想了一个下午想了一个比较靠谱的哈希方法。 用一个p进制数(p>n且为质数)来表示每一个节点,这个数有dep...
  • Coldef
  • Coldef
  • 2017年07月11日 18:07
  • 246

bzoj4205[FJ2015集训] 卡牌配对

神构图+最大流%%%奥爷爷
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:2015湖南省选集训DAY5——work(BZOJ4177)
举报原因:
原因补充:

(最多只允许输入30个字)