关闭

强化学习之深度Q函数

背景:强化学习之深度Q函数...
阅读(1110) 评论(0)

5种控制变量可学习性的方法(PyTorch)

5种控制变量可学习性的方法(PyTorch)...
阅读(1370) 评论(0)

灵魂资料汇总

灵魂 (spirit)与灵魂出窍...
阅读(172) 评论(0)

Phased LSTM

Phased LSTM...
阅读(702) 评论(0)

艺术风格转换之《A Neural Algorithm of Artistic Style》

艺术风格转换之《A Neural Algorithm of Artistic Style》...
阅读(1072) 评论(2)

VLAD特征(vector of locally aggregated descriptors)

VLAD特征(vector of locally aggregated descriptors)...
阅读(1113) 评论(0)

bag of words model 应用于图像

本文记录bag of words(BOW)在图像中的应用相关思路。 1. 简介 bag of words是文档的一种建模方法,它可以把一个文档表示成向量数据,从而使计算机处理文档数据更加方便。 wiki的例子很清晰的描述了BOW对一个文档建模的过程。 http://en.wikipedia.org/wiki/Bag-of-words_model 现有如下两个文档: John likes...
阅读(170) 评论(0)

微信公众号目录

学术 回复审稿意见的正确姿势 待人接物 国馆丨成年人的交往,是不越界限 周冲|你很聪明,但很讨厌 国馆|懂得拒绝,恰是最好的尊重 国馆|目中无人才是内心真正的强大 国馆|最好的相处:欣赏彼此的好,懂得彼此的苦 国馆|别说你的生活不容易 周冲|你越爱面子,就显得越low 国馆|请和说话不累的人交往 周冲|家族关系痛苦的根源:中国人普遍缺乏界限感 论文英语 论文英语鉴赏之一 论文英语鉴赏之二...
阅读(163) 评论(0)

python实战之实现excel读取、统计、写入

python实战之实现excel读取、统计、写入背景图像领域内的一个国内会议快要召开了,要发各种邀请邮件,之后要录入、统计邮件回复(参会还是不参会等)。如此重要的任务,老师就托付给我了。ps: 统计回复邮件的时候,能知道谁参会或谁不参会。而我主要的任务,除了录入邮件回复,就是统计理事和普通会员的参会情况了(参会的、不参会的、没回复的)。录入邮件回复信息没办法只能人工操作,但如果统计也要人工的话,那工...
阅读(15232) 评论(0)

Caffe之学习网络参数

Caffe之学习网络参数...
阅读(420) 评论(0)

Caffe之Classification

caffe 分类...
阅读(481) 评论(0)

User Interest Profiling from User Generated Visual Content----论文笔记

标题:根据用户产生的视觉内容(图像)分析用户兴趣一、背景1)准确地辨识出用户的特质和兴趣对私人定制和推荐系统都很重要。2)目前大多数工作都集中在用户产生的文本内容上,用户产生的视觉内容(图像)相对却很少受到关注,而图像现在非常普遍,且图像还不受语言障碍,所以这个课题值得研究。二、idea1)假设用户上传的图片是反映了自己的兴趣点,那么我们就可以根据分析这些图片内容,然后利用图片信息来推断用户的兴趣分...
阅读(448) 评论(0)

Efficient Dense-Field Copy-Move Forgery Detection----CMFD论文笔记

一、idea从何而来1)相对于sparse-field方法来说,dense-field的准确率好多了。2)之前的dense-field方法虽然比sparse-field的方法性能好,但是它在特征匹配阶段的处理时间太高,所以作者在特征匹配阶段以PatchMatch方法代替,大大加快了处理速度,还可以保持一定的平移、旋转、尺度不变性。总之,与同类dense-field算法相比,它准确率不差、更鲁棒、更快...
阅读(562) 评论(0)

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks----论文笔记

一、为什么提出Faster R-CNNFaster R-CNN的前身Fast R-CNN能达到实时检测,如果不考虑它用selective search计算region proposal所花时间的话。为此作者提出了Region Proposal Network(RPN),该深度网络通过共享卷积网络,使计算region proposal的时间几乎可以忽略不计(10 ms/图)!...
阅读(568) 评论(0)

Fast R-CNN 论文笔记

Fast R-CNN 论文笔记一、为什么提出Fast R-CNN因为Fast R-CNN的前任R-CNN和SPP-net不给力。R-CNN训练分为多个阶段,步骤繁琐: 微调网络+训练SVM+训练边框回归器; 训练耗时又耗内存; 目标检测又慢。SPP-net虽然比R-CNN快一些,但和R-CNN同样存在训练步骤繁锁的问题,而且无法更新SPP-net之前的卷积层。二、Fast R-CNN的框架Fast...
阅读(536) 评论(0)
22条 共2页1 2 下一页 尾页
    个人资料
    • 访问:29558次
    • 积分:421
    • 等级:
    • 排名:千里之外
    • 原创:17篇
    • 转载:5篇
    • 译文:0篇
    • 评论:2条
    最新评论