[Resolved] 偏导问题

原创 2015年07月08日 19:09:36

此问题来源于模糊C均值聚类的推导过程


符号定义:{xi,i=1,2,,n}是n个样本组成的样本集合,c为预定的类别数目,μi,i=1,2,,c每个聚类的中心,μj(xi)是第i个样本对于第j类的隶属度函数,且其满足如下关系式:

j=1cμj(xi)=1i=1,2,,c(1)

用隶属度函数定义的聚类损失函数可以写为:

Jf=j=1ci=1n[μj(xi)]bxiμj2(2)

其中,b>1是一个可以控制聚类结果的隶属度程度的常数。

Jfμj(xi)求偏导,并令偏导结果为0,可得:

μj(xi)=[1/xiμj2]1/(b1)k=1c[1/xiμk2]1/(b1)i=1,2,,nj=1,2,,c(3)

The Question is:

How to get the result (3) from (2) ?

Solution: Thanks to Mr.H

g=j=1cμj(xi)1,则原问题可描述为:在 g=0 的条件下, 求Jf最小。
使

Jfλg
μj(xi),j=1,2,,c 求偏导。

得:

b[μ1(xi)]b1xiμ12b[μ2(xi)]b1xiμ22b[μc(xi)]b1xiμc2j=1cμj(xi)1=λ=λ=λ=0,i=1,2,,n

即:

λb=[μj(xi)]b1xiμj2,{i=1,2,,nj=1,2,,c(1)

(λb)1/(b1)=μj(xi)[xiμj2]1/(b1),{i=1,2,,nj=1,2,,c(2)

μj(xi)=(λb)1/(b1)[1/xiμj2]1/(b1),{i=1,2,,nj=1,2,,c(3)

而后:

j=1cμj(xi)=1,i=1,2,,c

(3)变为:

(λb)1/(b1)j=1c[1/xiμj2]1/(b1)=1

(λb)1/(b1)=1j=1c[1/xiμj2]1/(b1)(4)

(4)(2),得:

1j=1c[1/xiμj2]1/(b1)=μj(xi)[xiμj2]1/(b1),{i=1,2,,nj=1,2,,c

即:

μj(xi)=[1/xiμj2]1/(b1)k=1c[1/xiμk2]1/(b1),{i=1,2,,nj=1,2,,c

图像处理中的一阶偏导和二阶偏导

1. 一阶差分: 2. 二阶偏导数的推导和近似: 3. 上式以点(i+1,j)为中心,用i代换i+1可得以(i,j)为中心的二阶偏导数则有: 4. 同理: 5....
  • xiaoxin_ling
  • xiaoxin_ling
  • 2015年02月11日 15:40
  • 1351

CSDN-markdown 之 LaTeX 特殊公式格式笔记

本文**持续更新**自己写 LaTeX 公式过程中遇到的一些特殊公式格式的语法。
  • thither_shore
  • thither_shore
  • 2016年08月20日 12:34
  • 5620

导数,偏导,方向倒数,梯度

知乎链接 https://www.zhihu.com/question/36301367 导数: 导数不仅仅表示该点切线的斜率,还反应了函数在该点的变化率。 偏导数: 偏导数...
  • fffupeng
  • fffupeng
  • 2017年06月20日 23:34
  • 570

梯度下降---偏导数及其几何意义

在一元函数中,我们已经知道导数就是函数的变化 率。对于二元函数我们同样要研究它的“变化率”。然 而,由于自变量多了一个,情况就要复杂的多。 一、几何意义   在xOy平面内,当动点由P(x0,...
  • qq_36330643
  • qq_36330643
  • 2017年11月22日 14:44
  • 146

梯度 方向导数 偏导数的一些整理

方向导数与梯度之间的关系: 方向导数是函数沿各个方向的导数,梯度是一个向量,因此梯度本身是有方向的: 1、函数在梯度这个方向的方向导数是最大的,换句话说,一个函数在各个方向都有方向导数,其...
  • shenxiaoming77
  • shenxiaoming77
  • 2015年12月23日 10:07
  • 3348

对范数求偏导数

首先介绍点基础知识,另一方面也算是巩固下: A−1A^{-1}表示A的逆矩阵; ATA^T表示A的转置; AHA^H表示Hermitian矩阵(A的共轭转置矩阵A∗==A)基础(1)迹(Trac...
  • lilong117194
  • lilong117194
  • 2017年09月24日 21:14
  • 262

对向量、方阵的求导

平时都是对一个数求导,那对向量求导呢?看下面的例子:          假设有下面这样的矩阵A和向量X                             我们很容易求出            ...
  • xueyingxue001
  • xueyingxue001
  • 2016年07月05日 11:04
  • 636

向量,标量对向量求导数

1.已知 对谁求导数,就以谁(分母)作为主序,得出结果。比如这里x是列向量,求Ax关于x求导数,那么对x的每个分量分别求偏导数(写成一行),然后整理排成一列(同x一样是列向量)。 同理有 ...
  • xidianliutingting
  • xidianliutingting
  • 2016年06月14日 17:09
  • 10067

使用jdk1.8出现有些类can not be resolved的情况

jdk1.8问题
  • k9526310
  • k9526310
  • 2016年07月22日 23:48
  • 1345

机器学习之代价函数

【机器学习】代价函数(cost function) 注:代价函数(有的地方也叫损失函数,Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价...
  • WWWQ2386466490
  • WWWQ2386466490
  • 2018年01月11日 10:05
  • 13
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[Resolved] 偏导问题
举报原因:
原因补充:

(最多只允许输入30个字)