图像分割性能评价

原创 2015年07月09日 20:45:11

采用的方式计算分割结果图像的性能指标,并以此评价分割的效果,具有客观、可重复等优点。

根据是否需要理想分割的参考结果图像,可将评价方法分为两类:

  • 无监督评价法。通过分割结果图像的来评价相应的分割算法。
  • 有监督评价法。将算法分割结果图像的参考图像进行

1. 无监督评价法

无监督评价法通过直接计算分割结果图像的特征参数来评价分割效果,其优势在于不需要理想分割的参考图像。分割结果图像的特征参数又称为指标或者测度。

无监督评价的指标一般分为:

  • 区域内一致性指标
  • 区域间差异性指标
  • 语义性指标

以下分别介绍:


1.1 区域内一致性指标


好的分割,其分割的区域内部的特征具有均匀性和一致性。区域内一致性指标主要基于图像的灰度、颜色、纹理、熵等信息。


1.1.1 使用最大对比度评价一致性


可通过计算最大对比度评价一个区域的均匀性。
对于一副图像I,假设分割后的二值图中有R1,R2,,RMM个区域,则第k个区域Rk的一致性zebk可以表示为:

zebk=1NkiRkjW(i)Rkmax(fifj)

其中,Nk为区域Rk的像素总数,iRk中的像素,fi为像素i的灰度值,W(i)为像素i的邻域, j为像素i包含在Rk中的邻域像素。

分割后图像的一致性评价标准可以用各个区域zebk的加权平均来表示:

Zeb=1Nk=1MNkzebk

其中N为图像I的像素总数。显然,对于一副分割结果图像,Zeb值越小,区域内一致性越好。


1.1.2 使用方差评价一致性


区域内一致性与该区域的方差是反比关系。零方差意味着特征区域内所有像素的灰度值或其他像素特征(颜色、纹理等)相同。相反,方差值很大,则特征区域的一致性很差。

对于一个具有相同特性的区域Rk,每一个像素i对应的特征值记为fi,则:

区域Rk的平均特征值fi¯为:

fk¯=1NkiRkfi

Nk是区域Rk的像素总和。

区域Rk的方差σ2k为:

σ2k=1NkiRk(fifk¯)2

评价一致性的指标定义为:

UI=1RkIwkσ2k/E

式中,wk为权重,E为归一化因数:

E=RkIwk(maxiRkfiminiRkfi)22

当使用Rk的像素总数代替权值,即 wk=Nk 时,有:

UI=12NRkIiRkfi1NkiRkfi2(maxiRkfiminiRkfi)2

对于一个分割结果图像,UI越大,区域内一致性越好。


1.2 区域间差异性指标


对于好的分割,其分割的相邻区域间的特性具有显著的差异。区域间差异性指标主要基于灰度、颜色、重心距离等信息。对于具有M个区域的图像I,可以通过计算两区域间的不一致性获得区域间的差异性,如:

DIR=1C2Mi=1M1j=i+1Mf(Ri)f(Rj)max(x,y)I(g(x,y))miniI(g(x,y))

其中,C2M为区域的组合数,(x,y)是像素点坐标,g(x,y)是灰度特征函数,f(Ri)为区域特征函数,一般为区域平均灰度。


1.3 语义指标


语义指标主要基于分割目标的形状和边界平滑度等信息。
比如,定义目标的紧凑度和圆度指标:

=p2S=4πSp2

其中,S为分割目标的面积,p为该目标的周长。


2. 有监督评价法


有监督评价的指标主要基于算法分割图像与参考图像两者的相似度或差异度,相似度越大或差异度越小,分割算法越好。


参考资料:


  1. 谢凤英. 数字图像处理与应用. 电子工业出版社, 2014.
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

图像分割的性能测试指标小结

图像分割性能评估方法,主要从文本检索中借鉴而来。因为我们可以将分割的像素点根据是否有无标记,映射到文本的相关性与否上来,这样就可以将文本检索中的性能评估引入到图像分割性能评估中。

基于深度学习的图像语义分割技术概述之5.1度量标准

本文为论文阅读笔记,不当之处,敬请指正。 A Review on Deep Learning Techniques Applied to Semantic Segmentation:原文链接 5...

图像分割结果的评估

我们在用一个算法对一幅图像进行分割之后,总会面临这样一个问题,分割的结果到底好不好。用眼睛可以看出好坏,但这只是主观的好坏,如何量化的对分割的结果进行评价呢,这是这篇文章我要讨论的主题。   我查阅过...

图像分割之(一)概述

图像分割之(一)概述 zouxy09@qq.com http://blog.csdn.net/zouxy09          所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若...

图像分割评价标准 代码 (Image segmentation evaluation metrics code)

图像分割评价标准 代码 (Image segmentation evaluation metrics code) 分享图像分割中用到的多种评价标准的代码: % test all segmentatio...

图像分割方法及性能评价综述

摘 要 对医学图像分割算法的客观评价是推进算法在临床上得到应用的关键。针对目前对医学图像分割方法的研究较多,而对分割算法的评价方法的研究却很少的问题,提出了一种判断和比较医学图像分割算法优劣的评价方法...

关于MFC美化界面的一个实现

熟悉VC/MFC编写界面的朋友经常会遇到这样的问题:自己编写的小软件功能已经完全实现,但是界面极其难看,因为使用的都是Windows默认的菜单,对话框,状态栏等元素。 因此,软件后期的美化界面是一项...

算法解剖系列-Canny边缘检测原理及实现

Canny边缘检测原理及Matlab实现

Canny边缘检测算法原理及其VC实现详解(一)

图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。图象的边缘部分集中了图象的大部分信息,图象边...

Canny边缘检测算法原理及其VC实现详解(二)

3、  Canny算法的实现流程        由于本文主要目的在于学习和实现算法,而对于图像读取、视频获取等内容不进行阐述。因此选用OpenCV算法库作为其他功能的实现途径(关于OpenCV的使用...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)