HTML5调用手机摄像拍照、相册等功能<input[type=file]>样式美化及demo

本文介绍如何利用HTML中的input标签实现文件上传功能,并详细解释了如何通过设置不同的属性来实现拍照、录制视频和录音等功能。此外,还提供了一个样例代码,展示了如何美化文件选择按钮并预览所选图片。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近用MUI做了个移动端项目,设计中涉及到调用手机摄像头拍照等功能需求,然而在PLUS环境下才能直接调用,这就让人有点头疼了,后经查询资料学习了解到有一个很简单的方法就是input:file标签,不需要复杂代码操作就能实现调用拍照、相册等功能。

//capture -- 设置选择需要调用的功能
//camera -- 照相机
//camcorder -- 摄像机
//microphone -- 录音 
//accept -- 直接打开系统文件目录 

<input type="file" accept="image/*" capture="camera">
<input type="file" accept="video/*" capture="camcorder">
<input type="file" accept="audio/*" capture="microphone">

//input:file标签还有一个属性multiple 用来支持多选 直接呼出原生选项
<input type="file" accept="image/*" multiple>
input [ type=file ] 按钮美化及上传demo

简单说就是:先将原按钮透明度opacity设为0,再外层用标签包裹,最终实现美化功能。

<!DOCTYPE html>
<html>
<head lang="en">
    <meta charset="UTF-8">
    <title> <input[type=file]>上传demo </title>
    <style>
        .file {
            position: relative;
            display: inline-block;
            background: #D0EEFF;
            border: 1px solid #99D3F5;
            border-radius: 4px;
            padding: 4px 12px;
            overflow: hidden;
            color: #1E88C7;
            text-decoration: none;
            text-indent: 0;
            line-height: 20px;
        }
        .file input {
            position: absolute;
            font-size: 100px;
            right: 0;
            top: 0;
            opacity: 0;
        }
        .file:hover {
            background: #AADFFD;
            border-color: #78C3F3;
            color: #004974;
            text-decoration: none;
        }
        p.bottomTitlt{
            margin: 0;
            letter-spacing: 2px;
            padding:  0;
        }
    </style>
</head>
<body>

<a href="javaScript:;" class="file">
    <p class="bottomTitlt">身份证正面</p>
    <img src="" alt=""/>
    <input type="file"  placeholder="身份证正面"  >
</a>
<p class="showFileName"></p>



<script src="https://code.jquery.com/jquery-3.2.0.min.js"></script>

<script type="text/javascript">
    $(".file").on("change","input[type='file']",function(){
        var filePath=$(this).val();
        var fr= new FileReader();
        var imgObj = this.files[0];
        fr.readAsDataURL(imgObj);
        var obj = $(this).prev()[0];
        if(filePath.indexOf("jpg")!=-1 || filePath.indexOf("JPG")!=-1 || filePath.indexOf("PNG")!=-1 || filePath.indexOf("png")!=-1){
            var arr = filePath.split('\\');
            var fileName = arr[arr.length-1];
            $(this).parent().next().html(fileName);
            fr.onload=function( ){
                obj.src=this.result;
            };
        }else{
            $(this).parent().next().html("您未上传文件,或者您上传文件类型有误!").css("color","red");
            return false
        }
    });
</script>

</body>
</html>

input[type=file]样式美化后效果图:

按钮美化效果

图片上传后效果图:

上传文件效果

### DUST3R 计算机视觉库使用教程 #### 安装依赖项 为了能够顺利运行 DUSt3R,需先安装必要的软件包。假设已经配置好了 Python 环境,则可以通过 pip 来安装所需的库。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 pip install opencv-python matplotlib numpy scipy h5py plyfile open3d ``` 这些命令会下载并安装 PyTorch 及其相关组件、OpenCV 用于图像处理以及其他辅助工具来支持数据读取与显示功能[^1]。 #### 准备环境 获取官方发布的源码仓库,并按照说明设置好工作目录结构: ```bash git clone https://github.com/AaltoVision/DUSt3R.git cd DUSt3R conda env create -f environment.yml conda activate duster-env ``` 上述操作将克隆项目至本地机器上,并创建一个新的 Conda 虚拟环境中执行后续步骤[^2]。 #### 运行示例脚本 在完成前期准备工作之后,就可以尝试一些简单的例子了。这里提供了一个基本的工作流程作为入门指南: - **单张图片重建** 对于仅有一幅输入的情况,可调用 `demo_monocular_reconstruction` 文件中的函数来进行测试: ```python from demo import monocular_reconstruction as mr if __name__ == "__main__": input_image_path = "path/to/input/image.jpg" output_dir = "./output" model_weights = "../pretrained_models/model_best.pth.tar" reconstructor = mr.Reconstructor(model_weights=model_weights) result = reconstructor.reconstruct(input_image_path=input_image_path, save_folder=output_dir) print(f"Reconstructed results saved at {result}") ``` 这段代码定义了一种方式去加载预训练权重文件并对指定路径下的单一JPEG格式影像实施三维建模过程;最终成果会被保存于设定好的目标位置内[^4]。 - **多视角场景分析** 当面对多个不同角度拍摄的照片组成的序列时,应该采用另一种策略——即利用 `multi_view_analysis` 中的功能模块开展更复杂的任务,比如计算各摄像设备之间的相对位姿变换矩阵等重要参数。 ```python import os from demo.multi_view_analysis import MultiViewAnalyzer def analyze_scene(image_directory, intrinsics_file=None): analyzer = MultiViewAnalyzer() scene_data = { 'images': sorted([os.path.join(image_directory, img_name) for img_name in os.listdir(image_directory)]), 'intrinsics': intrinsics_file } analysis_results = analyzer.analyze(scene=scene_data) return analysis_results if __name__ == '__main__': image_dir = "/path/to/multi-view/images/" intrinsic_params = None # 如果已知内部参数则传入相应文件名 res = analyze_scene(image_directory=image_dir, intrinsics_file=intrinsic_params) print(res.summary()) ``` 此部分展示了怎样通过遍历指定文件夹内的所有子图件名称列表构建起完整的观测场景区间描述对象;接着借助内置算法解析出整个空间布局特征并向终端输出摘要信息。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值