VC维

原创 2016年06月02日 12:32:53

为什么引入VC维
PAC中以|H |来刻画样本复杂度,它存在以下不足:可能导致非常弱的边界;对于无限假设空间的情形, 1/b*(log2(|H|)+log2(1/d))((2)式)根本无法使用。因此有必要引入另一度量标准VC 维。假设空间的VC 维, 用VCdim(H)表示, 被定义为最大的样本数d ,使得在所有可能的2 d 种二分(dichotomy)中,都能找到与该划分一致的一个假设。VC 维较准确地描述了PAC 学习所需的样本的长度。若C H ,则C 的一致
算法需要的样本数最多为:
法需要的样本数最多为[ 5] :
1/2(1 - ε)*(2VCdim(H)ln1/εln2/δ) (3)
如假设空间是在布尔域内, 则(2)给出了较好的界;但若是在实数域内, 因此时Hn = ∞, 则只能用(3)式, 对于针对某一具体表示(如神经网络)或当训练数据有噪声时, 如何求其样本复杂度, 。若L 是一致算法, 且VCdim(H)是有限的, 则算法L 是PAC学习的;反过来, 若L 是PAC学习的, 则概念类C 必有有限的VC维。

分散的概念
分散(shatter)的概念:对于一个给定集合S={x1, … ,xd},如果一个假设类H能够实现集合S中所有元素的任意一种标记方式,则称H能够分散S。

VC维的定义:
H的VC维表示为VC(H) ,指能够被H分散的最大集合的大小。若H能分散任意大小的集合,那么VC(H)为无穷大。在《神经网络原理》中有另一种记号:对于二分总体F,其VC维写作VCdim(F)。

二维线性分类器举例说明为什么其VC维是3,而不能分散4个样本的集合,这里也就是容易产生困惑的地方。下面进行解释
  对于三个样本点的情况,下面的S1所有的标记方式是可以使用线性分类器进行分类的,因此其VC维至少为3
 这里写图片描述
 虽然存在下面这种情况的S2,其中一种标记方式无法用线性分类器分类
 这里写图片描述
 但这种情况并不影响,这是因为,上一种的S1中,我们的H={二维线性分类器}可以实现其所有可能标签情况的分类,这和S2不能用H分散无关。

而对于4个样本点的情况,我们的H不能实现其所有可能标签情况的分类(这是经过证明的,过程不详)如下图中某个S和其中一种标签分配情况:

这里写图片描述
从这个解释过程可以看出,对于VC维定义理解的前提是先理解分散的定义。分散中的集合S是事先选定的,而VC维是能分散集合中基数(即这里的样本数)最大的。因此,当VC(H)=3时,也可能存在S’,|S’|=3但不能被H分散;而对于任意事先给定的S”,|S”|=4,H不能对其所有可能的标签分配方式进行分散。这里所谓“事先给定”可以看作其点在平面上位置已定,但所属类别未定(即可能是任意一种标签分配)。

抛出了一个结论:Dvc = d+1, d为feature vector的维度。
要证明这个等式,可以将它分为两块证明,
1 证明 Dvc >= d+1;
2 证明 Dvc <= d+1;
(此处不再具体证明)
这里写图片描述
这个图说了:
1 Dvc越高 -> Ein下降(shatter能力变强)-> model complexity的penalty提高,导致Eout先降后升
2 Dvc越低 -> Ein升高 -> model complexity的penalty降低,Eout最终也是会上升
所以最好情况的Eout是我们选取Dvc在中间的情况,这样Ein和penalty都不高,即最终的Eout也不会太高。这也就是为什么,我们不能够盲目增加feature也不能有太少feature的原因。

求二维上圆(3)和三角形(7)的VC维,需要给出说明。
———以下来自mythly(主要)和ejade(次要)的讨论结论——-
一维,实数轴上的点,用区间分,VC=2

二维,平面上的点
用直线/圆(强于直线,直径无穷大时可看成直线)VC=3(维数+1)

直线易证,圆3时易证 4时对任意四个点找最小的外接圆,然后要圆上的至多三个点在圆内,其余点在圆外,矛盾。

用矩形/正方形 VC=4(维数*2)

4时易证,5时取最上最左最右最下的点在里面,剩下一个点在外面。

凸多边形 VC=维数*边数+1

对三角形简要证明思路。
证存在7可以时,举个正七边形,0个在里面1个在里面2个在里面3个在里面(以那三个为顶点画)都显然。剩下4567在里面,相当于任意0123在外面,比如3个在外面,三角形一条边割一个出去即可。
证任何8不可以时,首先考察任意8个点的凸包(凸包概念请自学),如果有点在凸包内,那么要凸包上的点在里面,凸包里的点在外面,这显然是不可能的。
否则就是8个点都在凸包上。取不相邻的4个在里面。另外不相邻的4个就要在外面,由于在外面至少要在三角形一条边的外面,根据鸽笼原理,至少有两个点在同一边的外面。这样势必那两点间的应该在里面的点也会被切出去,矛盾了。。。

意思大致看看就行了嘛~格式很渣的>.<
所以凸45678变形都可以用上述证法以此类推
三维,根据推论
平面/球 4(维数+1)
超立方体(正方体,长方体)VC=6(维数*2)
证略

All the decision trees can be represented by Boolean functions Vc(H)=∞

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

【机器学习基础概念】过拟合,交叉验证,VC维

过拟合 概念理解:为了使分类器能够对训练数据进行完全正确的分类,而把分类器构造得过度精细复杂,使得训练数据稍微有改动,分类器就会失效。简单点理解就是,能够正确甚至百分百分类训练数据,对于测试数据...
  • SMF0504
  • SMF0504
  • 2016年10月10日 15:45
  • 318

我对VC维的理解

这次论文感觉很有意义,之前对VC维虽然有所了解但是没有进行深入的研究。趁此作业机会我通过网络资料、Vapnik的书《The Nature of Statistical Learning Theory》...

机器学习相关概念:过拟合,交叉验证,VC维....

交叉验证

Foundation of Machine Learning 笔记第七部分—— VC维

这个系列的文章虽然题为书本《Foundation of Machine Learning》的读书笔记

机器学习(7)--VC维数

90年代初,Vapnik and A. Chervonenkis提出了支持向量机(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。...

svm、经验风险最小化、vc维

“支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上” 结构化风险 结构化风险 = 经验风险 + 置信风险 经验风险 =  分类器在给定样本上的误差 置信风险 = 分类器...

解读机器学习基础概念:VC维的来龙去脉(转)

目录: 说说历史Hoeffding不等式Connection to Learning学习可行的两个核心条件Effective Number of HypothesesGrowth Functio...

VC维

有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念。在读《神经网络原理》的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这...

vc维的本质和结构风险最小化

VC维被认为是数学和计算机科学中非常重要的定量化概念,它可用来刻画分类系统的性能.    模式识别中VC维的直观定义是:对一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的2h种形式分...

(斯坦福机器学习课程笔记)VC维,交叉检验和特征选择

====================VC维================= 上一节课通过hoeffding不等式得出的经验风险最小化及其推论,是基于模型集合是有限的这一假设的。显然的,一般情况...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:VC维
举报原因:
原因补充:

(最多只允许输入30个字)