关闭

Scalaz(58)- scalaz-stream: fs2-并行运算示范,fs2 parallel processing

标签: 编程scalascalazfunctional programmi
464人阅读 评论(0) 收藏 举报
分类:

    从表面上来看,Stream代表一连串无穷数据元素。一连串的意思是元素有固定的排列顺序,所以对元素的运算也必须按照顺序来:完成了前面的运算再跟着进行下一个元素的运算。这样来看,Stream应该不是很好的并行运算工具。但是,fs2所支持的并行运算方式不是以数据元素而是以Stream为运算单位的:fs2支持多个Stream同时进行运算,如merge函数。所以fs2使Stream的并行运算成为了可能。

一般来说,我们可能在Stream的几个状态节点要求并行运算:

1、同时运算多个数据源头来产生不排序的数据元素

2、同时对获取的一连串数据元素进行处理,如:map(update),filter等等

3、同时将一连串数据元素无序存入终点(Sink)

我们可以创建一个例子来示范fs2的并行运算:模拟从3个文件中读取字串,然后统计在这3个文件中母音出现的次数。假设文件读取和母音统计是有任意时间延迟的(latency),我们看看如何进行并行运算及并行运算能有多少效率上的提升。我们先设定一些跟踪和模拟延迟的帮助函数:

def log[A](prompt: String): Pipe[Task,A,A] = _.evalMap { a => Task.delay{ println(s"$prompt>"); a }}
                                                  //> log: [A](prompt: String)fs2.Pipe[fs2.Task,A,A]
def randomDelay[A](max: FiniteDuration): Pipe[Task,A,A] = _.evalMap { a =>
  val delay: Task[Int] = Task.delay { scala.util.Random.nextInt(max.toMillis.toInt) }
  delay.flatMap {d => Task.now(a).schedule(d.millis) }
}                                                 //> randomDelay: [A](max: scala.concurrent.duration.FiniteDuration)fs2.Pipe[fs2.


log是个跟踪函数,randomDelay是个延迟模拟函数,模拟在max内的任意时间延迟。

与scalaz-stream-0.8不同,fs2重新实现了文件操作功能:不再依赖java的字串(string)处理功能。也不再依赖scodec的二进制数据转换功能。下面是fs2的文件读取方法示范:

val s1 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/BasicBackend.scala"),1024)
  //> s1  : fs2.Stream[fs2.Task,Byte] = evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>)
val s2 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/DatabaseConfig.scala"),1024)
  //> s2  : fs2.Stream[fs2.Task,Byte] = evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>)
val s3 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/BasicProfile.scala"),1024)
  //> s3  : fs2.Stream[fs2.Task,Byte] = evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>)


fs2.io.file.readAll函数的款式如下:

def readAll[F[_]](path: Path, chunkSize: Int)(implicit F: Effect[F]): Stream[F, Byte] ={...}


readAll分批(by chunks)从文件中读取Byte类型数据(当返回数据量小于chunkSize代表完成读取),返回结果类型是Stream[F,Byte]。我们需要进行Byte>>>String转换及分行等处理。fs2在text对象里提供了相关函数:

object text {
  private val utf8Charset = Charset.forName("UTF-8")

  /** Converts UTF-8 encoded byte stream to a stream of `String`. */
  def utf8Decode[F[_]]: Pipe[F, Byte, String] =
    _.chunks.through(utf8DecodeC)

  /** Converts UTF-8 encoded `Chunk[Byte]` inputs to `String`. */
  def utf8DecodeC[F[_]]: Pipe[F, Chunk[Byte], String] = {
    /**
      * Returns the number of continuation bytes if `b` is an ASCII byte or a
      * leading byte of a multi-byte sequence, and -1 otherwise.
      */
    def continuationBytes(b: Byte): Int = {
      if      ((b & 0x80) == 0x00) 0 // ASCII byte
      else if ((b & 0xE0) == 0xC0) 1 // leading byte of a 2 byte seq
      else if ((b & 0xF0) == 0xE0) 2 // leading byte of a 3 byte seq
      else if ((b & 0xF8) == 0xF0) 3 // leading byte of a 4 byte seq
      else                        -1 // continuation byte or garbage
    }
...
/** Encodes a stream of `String` in to a stream of bytes using the UTF-8 charset. */
  def utf8Encode[F[_]]: Pipe[F, String, Byte] =
    _.flatMap(s => Stream.chunk(Chunk.bytes(s.getBytes(utf8Charset))))

  /** Encodes a stream of `String` in to a stream of `Chunk[Byte]` using the UTF-8 charset. */
  def utf8EncodeC[F[_]]: Pipe[F, String, Chunk[Byte]] =
    _.map(s => Chunk.bytes(s.getBytes(utf8Charset)))

  /** Transforms a stream of `String` such that each emitted `String` is a line from the input. */
  def lines[F[_]]: Pipe[F, String, String] = {
...

utf8Encode,utf8Decode,lines这几个函数正是我们需要的,它们都是Pipe类型。我们可以把这几个Pipe直接用through接到Stream上:

val startTime = System.currentTimeMillis         //> startTime  : Long = 1472444756321
 val s1lines = s1.through(text.utf8Decode).through(text.lines)
     .through(randomDelay(10 millis)).runFold(0)((b,_) => b + 1).unsafeRun
                                                  //> s1lines  : Int = 479
 println(s"reading s1 $s1lines lines in ${System.currentTimeMillis - startTime}ms")
                                                  //> reading s1 479 lines in 5370ms
 
 val startTime2 = System.currentTimeMillis        //> startTime2  : Long = 1472444761691
 val s2lines = s2.through(text.utf8Decode).through(text.lines)
   .through(randomDelay(10 millis)).runFold(0)((b,_) => b + 1).unsafeRun
                                                  //> s2lines  : Int = 174
 println(s"reading s2 $s2lines lines in ${System.currentTimeMillis - startTime2}ms")
                                                  //> reading s2 174 lines in 1923ms
 val startTime3 = System.currentTimeMillis        //> startTime3  : Long = 1472444763614
 val s3lines = s3.through(text.utf8Decode).through(text.lines)
   .through(randomDelay(10 millis)).runFold(0)((b,_) => b + 1).unsafeRun
                                                  //> s3lines  : Int = 174
println(s"reading s3 $s3lines lines in ${System.currentTimeMillis - startTime3}ms")
                                                  //> reading s3 174 lines in 1928ms
println(s"reading all three files ${s1lines+s2lines+s3lines} total lines in ${System.currentTimeMillis - startTime}ms")
                                                  //> reading all three files 827 total lines in 9221ms


在以上的例子里我们用runFold函数统计文件的文字行数并在读取过程中用randomDelay来制造了随意长度的拖延。上面3个文件的字串读取和转换处理一共877行、9221ms。

我们知道fs2的并行运算函数concurrent.join函数类型款式是这样的:

def join[F[_],O](maxOpen: Int)(outer: Stream[F,Stream[F,O]])(implicit F: Async[F]): Stream[F,O] = {...}


join运算的对象outer是个两层Stream(Streams of Stream):Stream[F,Stream[F,P]],我们需要先进行类型款式调整:

val lines1 = s1.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis))
  //> lines1  : fs2.Stream[fs2.Task,String] = evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>).flatMap(<function1>)
val lines2 = s2.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis))
  //> lines2  : fs2.Stream[fs2.Task,String] = evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>).flatMap(<function1>)
val lines3 = s3.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis))
  //> lines3  : fs2.Stream[fs2.Task,String] = evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>).flatMap(<function1>)
val ss: Stream[Task,Stream[Task,String]] = Stream(lines1,lines2,lines3)
  //> ss  : fs2.Stream[fs2.Task,fs2.Stream[fs2.Task,String]] = Segment(Emit(Chunk(evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>).flatMap(<function1>), evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>).flatMap(<function1>), evalScope(Scope(Bind(Eval(Snapshot),<function1>))).flatMap(<function1>).flatMap(<function1>))))

现在这个ss的类型复合我们的要求。我们可以测试一下并行运算的效率:

val ss_start = System.currentTimeMillis           //> ss_start  : Long = 1472449962698
val ss_lines = fs2.concurrent.join(3)(ss).runFold(0)((b,_) => b + 1).unsafeRun
                                                  //> ss_lines  : Int = 827
println(s"parallel reading all files ${ss_lines} total lines in ${System.currentTimeMillis - ss_start}ms")
                                                  //> parallel reading all files 827 total lines in 5173ms


读取同等行数但只用了5173ms,与之前的9221ms相比,大约有成倍的提速。

join(3)(ss)返回了一个合并的Stream,类型是Stream[Task,String]。我们可以运算这个Stream里母音出现的频率。我们先设计这个统计函数:

//c 是个vowl
def vowls(c: Char): Boolean = List('A','E','I','O','U').contains(c)
                                                  //> vowls: (c: Char)Boolean
//直接用scala标准库实现
def pipeVowlsCount: Pipe[Task,String,Map[Char,Int]] =
  _.evalMap (text => Task.delay{
     text.toUpperCase.toList.filter(vowls).groupBy(s => s).mapValues(_.size)
     }.schedule((text.length / 10).millis))       //> pipeVowlsCount: => fs2.Pipe[fs2.Task,String,Map[Char,Int]]


注意我们使用了text => Task.delay{...}.schedule(d),实际上我们完全可以用 text => Thread.sleep(d),但是这样会造成了不纯代码,所以我们用evalMap来实现纯代码运算。试试统计全部字串内母音出现的总数:

import scalaz.{Monoid}
//为runFold提供一个Map[Char,Int]Monoid实例
implicit object mapMonoid extends Monoid[Map[Char,Int]]  {
   def zero: Map[Char,Int] = Map()
   def append(m1: Map[Char,Int], m2: => Map[Char,Int]): Map[Char,Int] = {
     (m1.keySet ++ m2.keySet).map { k =>
       (k, m1.getOrElse(k,0) + m2.getOrElse(k,0))
     }.toMap
   }
}
val vc_start = System.currentTimeMillis           //> vc_start  : Long = 1472464772465
val vowlsLine = fs2.concurrent.join(3)(ss).through(pipeVowlsCount)
    .runFold(Map[Char,Int]())(mapMonoid.append(_,_)).unsafeRun
  //> vowlsLine  : scala.collection.immutable.Map[Char,Int] = Map(E -> 3381, U - 838, A -> 2361, I -> 2031, O -> 1824)
println(s"parallel reading all files and counted vowls sequencially in ${System.currentTimeMillis - vc_start}ms")
  //> parallel reading all files and counted vowls sequencially in 10466ms


我们必须为runFold提供一个Monoid[Map[Char,Int]]实例mapMonoid。

那我们又如何实现统计功能的并行运算呢? fs2.concurrent.join(maxOpen)(...)函数能把一个Stream截成maxOpen数的子Stream,然后对这些子Stream进行并行运算。那么我们又如何转换Stream[F,Stream[F,O]]类型呢?我们必须把Stream[F,O]的O升格成Stream[F,O]。我们先用一个函数来把O转换成Map[Char,Int],然后把这个函数升格成Stream[Task,Map[Char,Int],这个可以用Stream.eval实现:

def fVowlsCount(text: String): Map[Char,Int] =
  text.toUpperCase.toList.filter(vowls).groupBy(s => s).mapValues(_.size)
                                                  //> fVowlsCount: (text: String)Map[Char,Int]
val parVowlsLine: Stream[Task,Stream[Task,Map[Char,Int]]] = fs2.concurrent.join(3)(ss)
    .map {text => Stream.eval(Task {fVowlsCount(text)}.schedule((text.length / 10).millis))}
    //> parVowlsLine  : fs2.Stream[fs2.Task,fs2.Stream[fs2.Task,Map[Char,Int]]] = attemptEval(Task).flatMap(<function1>).flatMap(<function1>).mapChunks(<function1>)


我们来检查一下运行效率:

val parvc_start = System.currentTimeMillis        //> parvc_start  : Long = 1472465844694
fs2.concurrent.join(8)(parVowlsLine)
  .runFold(Map[Char,Int]())(mapMonoid.append(_,_)).unsafeRun
  //> res0: scala.collection.immutable.Map[Char,Int] = Map(E -> 3381, U -> 838, A-> 2361, I -> 2031, O -> 1824)
println(s"parallel reading all files and counted vowls in ${System.currentTimeMillis - parvc_start}ms")
  //> parallel reading all files and counted vowls in 4984ms


并行运算只需要4985ms,而流程运算需要10466+(9221-5173)=14xxx,这里有3,4倍的速度提升。

下面是这次讨论的示范源代码:

import fs2._
import scala.language.{higherKinds,implicitConversions,postfixOps}
import scala.concurrent.duration._
object fs2Merge {
implicit val strategy = Strategy.fromFixedDaemonPool(4)
implicit val scheduler = Scheduler.fromFixedDaemonPool(2)
def log[A](prompt: String): Pipe[Task,A,A] = _.evalMap { a => Task.delay{ println(s"$prompt>"); a }}
def randomDelay[A](max: FiniteDuration): Pipe[Task,A,A] = _.evalMap { a =>
  val delay: Task[Int] = Task.delay { scala.util.Random.nextInt(max.toMillis.toInt) }
  delay.flatMap {d => Task.now(a).schedule(d.millis) }
}
     
 val s1 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/BasicBackend.scala"),1024)
 val s2 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/DatabaseConfig.scala"),1024)
 val s3 = io.file.readAll[Task](java.nio.file.Paths.get("/Users/tiger-macpro/basic/BasicProfile.scala"),1024)
 

 val startTime = System.currentTimeMillis
 val s1lines = s1.through(text.utf8Decode).through(text.lines)
     .through(randomDelay(10 millis)).runFold(0)((b,_) => b + 1).unsafeRun
 println(s"reading s1 $s1lines lines in ${System.currentTimeMillis - startTime}ms")
 
 val startTime2 = System.currentTimeMillis
 val s2lines = s2.through(text.utf8Decode).through(text.lines)
   .through(randomDelay(10 millis)).runFold(0)((b,_) => b + 1).unsafeRun
 println(s"reading s2 $s2lines lines in ${System.currentTimeMillis - startTime2}ms")
 val startTime3 = System.currentTimeMillis
 val s3lines = s3.through(text.utf8Decode).through(text.lines)
   .through(randomDelay(10 millis)).runFold(0)((b,_) => b + 1).unsafeRun
println(s"reading s3 $s3lines lines in ${System.currentTimeMillis - startTime3}ms")
println(s"reading all three files ${s1lines+s2lines+s3lines} total lines in ${System.currentTimeMillis - startTime}ms")
val lines1 = s1.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis))
val lines2 = s2.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis))
val lines3 = s3.through(text.utf8Decode).through(text.lines).through(randomDelay(10 millis))
val ss: Stream[Task,Stream[Task,String]] = Stream(lines1,lines2,lines3)
val ss_start = System.currentTimeMillis
val ss_lines = fs2.concurrent.join(3)(ss).runFold(0)((b,_) => b + 1).unsafeRun
println(s"parallel reading all files ${ss_lines} total lines in ${System.currentTimeMillis - ss_start}ms")

//c 是个vowl
def vowls(c: Char): Boolean = List('A','E','I','O','U').contains(c)
//直接用scala标准库实现
def pipeVowlsCount: Pipe[Task,String,Map[Char,Int]] =
  _.evalMap (text => Task.delay{
     text.toUpperCase.toList.filter(vowls).groupBy(s => s).mapValues(_.size)
     }.schedule((text.length / 10).millis))
  
import scalaz.{Monoid}
//为runFold提供一个Map[Char,Int]Monoid实例
implicit object mapMonoid extends Monoid[Map[Char,Int]]  {
   def zero: Map[Char,Int] = Map()
   def append(m1: Map[Char,Int], m2: => Map[Char,Int]): Map[Char,Int] = {
     (m1.keySet ++ m2.keySet).map { k =>
       (k, m1.getOrElse(k,0) + m2.getOrElse(k,0))
     }.toMap
   }
}
val vc_start = System.currentTimeMillis
val vowlsLine = fs2.concurrent.join(3)(ss).through(pipeVowlsCount)
    .runFold(Map[Char,Int]())(mapMonoid.append(_,_)).unsafeRun
println(s"parallel reading all files and counted vowls sequencially in ${System.currentTimeMillis - vc_start}ms")
def fVowlsCount(text: String): Map[Char,Int] =
  text.toUpperCase.toList.filter(vowls).groupBy(s => s).mapValues(_.size)
val parVowlsLine: Stream[Task,Stream[Task,Map[Char,Int]]] = fs2.concurrent.join(3)(ss)
    .map {text => Stream.eval(Task {fVowlsCount(text)}.schedule((text.length / 10).millis))}
val parvc_start = System.currentTimeMillis
fs2.concurrent.join(8)(parVowlsLine)
  .runFold(Map[Char,Int]())(mapMonoid.append(_,_)).unsafeRun
println(s"parallel reading all files and counted vowls in ${System.currentTimeMillis - parvc_start}ms") 
}
















0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:67326次
    • 积分:2391
    • 等级:
    • 排名:第17462名
    • 原创:179篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条
    最新评论