HDU 4746 Mophues (莫比乌斯反演应用)

78 篇文章 0 订阅
56 篇文章 0 订阅


Mophues

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others)

Total Submission(s): 980    Accepted Submission(s): 376

Problem Description

As we know, any positive integer C ( C >= 2 ) can be written as the multiply of some prime numbers:
    C = p1×p2× p3× ... × pk
which p1, p2 ... pk are all prime numbers.For example, if C = 24, then:
    24 = 2 × 2 × 2 × 3
    here, p1 = p2 = p3 = 2, p4 = 3, k = 4
Given two integers P and C. if k<=P( k is the number of C's prime factors), we call C a lucky number of P.
Now, XXX needs to count the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of a given P ( "gcd" means "greatest common divisor").
Please note that we define 1 as lucky number of any non-negative integers because 1 has no prime factor.
 
Input
The first line of input is an integer Q meaning that there are Q test cases.
Then Q lines follow, each line is a test case and each test case contains three non-negative numbers: n, m and P (n, m, P <= 5×105. Q <=5000).
 
Output
For each test case, print the number of pairs (a, b), which 1<=a<=n , 1<=b<=m, and gcd(a,b) is a lucky number of P.
 
Sample Input
  
  
2 10 10 0 10 10 1
 
Sample Output
  
  
63 93
 
Source
 
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4746

题目大意:定义num[i]为将i唯一分解后所有质因子的个数,要求num[gcd(a, b)] <= p的(a,b)的对数,其中1 <= a <= n,1 <= b <= m

题目分析:这题T了一天,先不考虑1,题目给的p的最大值是5e5,因此num[i]最大为18,因为2^19就大于5e5了
定义f(d)为gcd(a,b) = d的个数,g(d)为gcd(a,b) = d的倍数的个数,显然g(d)很好求,就是(n / d) * (m / d)
又g(d) = f(d) + f(2d) + f(3d) + ...对此式进行莫比乌斯反演得到
f(d) = u(1)g(d) + u(2)g(2d) + u(3)g(3d) + ...,最后答案为Σu(k)g(kd),此时若直接枚举d,就算计算f(d)用分块求和优化成接近sqrt(n),n*sqrt(n)接近2e8肯定超时,因此要换别的思路,考虑到num[i]最大只有18,我们可以预处理出以i为最大公约数,且分解i后质因子个数等于num[i]的方案数,根据公式有sum[ki][num[i]] += u[k],令j=ki,则sum[j][num[i]] += u[j / i],注意这里算的只是莫比乌斯函数的贡献值,
举个例子,比如
f(2) = u(1)g(2) + u(2)g(4) + u(3)g(6) + ...
f(3) = u(1)g(3) + u(2)g(6) + u(3)g(9) + ...
答案肯定要把它们加起来,注意到g(6)出现了两次,可以理解为6这个数字对num[i] = 1的情况有两次贡献, 因此可以写成(u(2) + u(3)) * g(6)
然后再处理分解i后质因子个数小于等于num[i]的方案数,最后再处理以i为最大公约数的前缀和,预处理工作就结束了,复杂度为nlogn,在线计算时用分块求和优化,复杂度为qsqrt(n),总的复杂度大概为nlogn+qsqrt(n)


#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MAX = 5e5 + 5;
int n, m, p, pnum;
int mob[MAX], pr[MAX], sum[MAX][20];
int num[MAX];
bool prime[MAX];

void Mobius()
{
    pnum = 0;
    memset(prime, true, sizeof(prime));
    mob[1] = 1;
    for(int i = 2; i < MAX; i++)
    {
        if(prime[i])
        {
            pr[pnum ++] = i;
            num[i] = 1;
            mob[i] = -1;
        }
        for(int j = 0; j < pnum && i * pr[j] < MAX; j++)
        {
            num[i * pr[j]] = num[i] + 1;
            prime[i * pr[j]] = false;
            if(i % pr[j] == 0)
            {
                mob[i * pr[j]] = 0;
                break;
            }
            mob[i * pr[j]] = -mob[i];
        }
    }
}

void Init()
{
    Mobius();
    for(int i = 1; i < MAX; i++)
        for(int j = i; j < MAX; j += i)
            sum[j][num[i]] += mob[j / i];
    for(int i = 1; i < MAX; i++)
        for(int j = 1; j < 19; j++)
            sum[i][j] += sum[i][j - 1];
    for(int i = 1; i < MAX; i++)
        for(int j = 0; j < 19; j++)
            sum[i][j] += sum[i - 1][j];
}

ll cal(int l, int r)
{
    ll ans = 0;
    if(l > r)
        swap(l, r);
    for(int i = 1, last = 0; i <= l; i = last + 1)
    {
        last = min(l / (l / i), r / (r / i));
        ans += (ll) (l / i) * (r / i) * (sum[last][p] - sum[i - 1][p]);  
    }
    return ans;
}   

int main()
{
    Init();
    int T;
    scanf("%d", &T);
    while(T --)
    {
        scanf("%d %d %d", &n, &m, &p);
        printf("%lld\n", p > 18 ? (ll) n * m : cal(n, m));
    }
}


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值