hdu 5713 K个联通块 2016百度之星复赛1002 DP

原创 2016年05月30日 17:52:26

用dp[i][k] 表示 状态i分成k个联通块的方案数。状态i的二进制第j位代表编号为j的点。

f[i]表示状态i内删边,仍保持一个联通块的方案数。

则有 转移方程 dp[i][k] = sum(dp[i-j][k-1]*f[j]).   j 是i的子状态,但不是i的所有子状态。为什么呢?

假设i 表示 点集 {1,2,3,4} 然后分成 {1,2} {3,4} 如果枚举所有子状态,则在j = {1,2}的时候算了一次这种方案, j = {3,4}的时候又算了一次这种方案。

处理方法是,i状态分成k个联通块,k个联通块中,必有一个包含i中编号最小的点。则我们只枚举包含最小编号点的子状态j。避免了重复


f[i]怎么求?

直接求删边后仍是一个连通块的方案较难。用总方案数减去删边后被分割的方案。

假设g[i]是状态i删边后不是一个联通块的方案数。 则f[i] = 2^cnt[i] - g[i];    (cnt[i]是状态i内的边数,易求)

g[i] = sum(2^cnt[i-j]*f[j]). j是i的子方案(和上面dp方程一样,不是所有子方案,而是包含i中最小点的子方案)

------------------------------------------------------------------------------------

f[i] 其实就是 dp[i][1]

#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<algorithm>
#include<vector>
using namespace std;
void fre(){freopen("t.txt","r",stdin);}
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x, y) memcpy(x, y, sizeof(x))
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
const int INF = 0x3f3f3f3f;
const int M = 1000000009;
const double eps = 1e-8;

int n,m,K;
int cnt[20000],e[15][15];
LL dp[20000][15],f[20000],g[20000],bit[150];
int calc(int s,int p)
{
    int ret = 0;
    p = lower_bound(bit,bit+15,p)-bit;
    for(int i = 0; i < n; ++i) if(s&bit[i]) ret += e[i][p];
    return ret;
}
void solve()
{
    int u,v;
    scanf("%d%d%d",&n,&m,&K);
    MS(e,0);MS(g,0);MS(dp,0),MS(f,0);
    while(m--)
    {
        scanf("%d%d",&u,&v);
        e[u-1][v-1]++;
        if(u!=v) e[v-1][u-1]++;
    }

    for(int i = 1; i < bit[n]; ++i) cnt[i] = cnt[i-(i&-i)] + calc(i,i&-i);
    for(int i = 1; i < bit[n]; ++i)
    {
        int j = i;
        do
        {
            j = j-1&i;
            if(j&(i&-i)) g[i] = (g[i] + bit[cnt[i-j]]*f[j])%M;
        }while(i!=j);
        f[i] = (bit[cnt[i]]-g[i])%M;//刚开始没注意到这里会减成负数,于是wa啦
    }
    dp[0][0] = 1;
    for(int i = 1; i < bit[n]; ++i)
    {
        for(int k = 1; k <= K; ++k)
        {
            int j = i;
            do
            {
                j = j-1&i;
                if(j&(i&-i)) dp[i][k] = (dp[i][k] + dp[i-j][k-1]*f[j]%M)%M;
            }while(i!=j);
        }
    }
    printf("%I64d\n",(dp[bit[n]-1][K]+M)%M);
}
int main()
{
    //fre();
    bit[0] = 1; for(int i = 1; i <= 115; ++i) bit[i] = (bit[i-1]<<1)%M;
    int T,cas = 0;
    scanf("%d",&T);
    while(T--)
        printf("Case #%d:\n",++cas) ,solve();
    return 0;
}


版权声明:转载注明出处。有任何疑问可留言。

相关文章推荐

HDU 5713 K个联通块 状压dp枚举子集 (2016百度之星复赛)

题意 众所周知,度度熊喜欢图,尤其是联通的图。 今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块。  #inclu...

HDU5713 2016"百度之星" - 复赛(Astar Round3)K个联通块

一道状态压缩动态规划题 题目描述:众所周知,度度熊喜欢图,尤其是联通的图。今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块。 ...

HDU 5713 & 2016"百度之星" 复赛(Astar Round3)1002 k个联通块

题意:众所周知,度度熊喜欢图,尤其是联通的图。 今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有K个连通块。思路:首先可以很容易想到状态...

HDU 5713 K个联通块【状压计数dp……补集转化?

显然可以f[s][i] 表示点集s有i个连通块的方案数,枚举子集的时候,令其中一个的i=1,并强行把lowbit(s)表示的节点塞在i=1的子集里面,就避免了算重 然后考虑如何计算对于点集s 全部连...
  • Flaze_
  • Flaze_
  • 2016年12月16日 00:02
  • 228

hdu 5713 图去多少条边变为指定连通块 dp ...

图去多少条边变为指定连通块 #include #include #include #include #include #include #include using namespace std; ...

hdu 3017 Treasure Division 折半枚举 + 双指针

运气不错排了第二。内存比他们大了好多。不知道他们是什么方法。 把n个coin分成两半,在两半里分别枚举所有情况,第一半取了i枚硬币则把价值存入s1[i],第二半取了i枚硬币则把价值存入s2[...

HDU 5715 & 2016"百度之星" 复赛(Astar Round3)1004 XOR游戏(Trie)

题意:众所周知,度度熊喜欢XOR运算(XOR百科)。 今天,它发明了一种XOR新游戏,最开始,它有一个长度为N的数组,度度熊可以任意添加分割线,将数组划分为M段,且每段长度小于等于L。 当然这是个...

HDU5713 K个联通块

我觉得我要能现场做出来这道题的话,起码得省选之后了。
  • QWsin
  • QWsin
  • 2017年01月10日 17:27
  • 251

HDU 5371 Hotaru's problem(Manacher算法 回文串)

HDU 5371 Hotaru's problem(Manacher算法 回文串)

2016"百度之星" - 复赛(Astar Round3) 题解 (待续)

拍照扫描线 模版题#include #include #include #include #include #include #include #include #include #include u...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu 5713 K个联通块 2016百度之星复赛1002 DP
举报原因:
原因补充:

(最多只允许输入30个字)