插入排序

package chapter1;

/**
 * 插入排序
 * 
 * 有一个n为数组,对其按照升序排列
 * 
 * 方法:从大小为1的子数组A[0]开始排序,因为A[0]就只有一个元素,所以是有序的
 * 
 * 接下来,讲A[1]插入到A[0]的前面后者后面,这取决于A[1]与A[0]的大小
 * 
 * 继续此过程,将A[i]插入到A[0···i-1]子数组中·····
 * 
 * 元素的比较次数取决于输入元素的顺序
 * 
 * 当输入序列按照非降序排列时,元素比较的次数最小,需比较n-1次
 * 
 * 当输入序列按照降序排列,且所有元素都不相同,比较的次数最大。为n(n-1)/2
 * 
 * @author guanya.zhou
 * @date 2016年11月14日
 * @Description TODO
 */
public class InsertionSort {
	
	public static void main(String[] args) {

		int[] arr = { 1, 2, 3, 6, 5, 4, 7, 8, 9, 10, 9, 8, 20, 18, 16, 14, 12, 10 };
		
		for (int i = 2; i < arr.length ; i++) {		//第一个元素默认就是有序的,从第二个元素开始
													//从第二个元素开始,依次与这个元素之前的元素对比
			
			int j = i - 1;
			
			int x = arr[i];
			
			while (j > 0 && arr[j] > x) {			//当前元素大于在他之前的元素
				
				arr[j + 1] = arr[j];				//与当前元素做比较的元素往后挪动
				
				j--;
				
			}
			
			arr[j + 1] = x;
		}
		
		for(int element : arr) {
			
			System.out.print(element + " ");
			
		}
	}
}



内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值