哪些素数可以表示成两平方数之和? hdoj 3542 费马降阶

原创 2012年03月26日 18:10:50

摘自数论概论的内容:

素数的两平方数之和定理:设p是素数,则p是两平方数之和的充要条件是p= 1(mod 4) (或 p = 2).

两平方数之和定理实际上由两个陈述组成:

陈述1:如果p是两平方数之和,则p = 1(mod 4).

证明:设p = a^2 + b^2,p是奇数,所以a,b为一奇一偶,设a为奇数, b为偶数.比如 a= 2*n+1 b = 2*m.p = a^2 + b^2 = 4n^2+4n+1+4m^2 = 1 (mod 4).

陈述2:如果= 1(mod 4),则p是两平方数之和. 这个的证明很麻烦,主要依据费马降阶法,可以参考数论概论第26章。

简单的说,如果= 1(mod 4),不直接获得p是两平方数之和,而是将p的某个倍数表示成两个平方数之和。由二次互反律知x^2=-1(mod p)有一解,令x = a,b = 1,

a*a + b*b = Mp.利用费马降阶不断减小p的倍数使其可以表示两平方数之和,最终使p变成两平方数之和。如何利用已知的a, b, M来产生新的a, b, M.有恒等式:

(v^2+v^2)(a^2+b^2) = (ua+vb)^2 + (va-ub)^2.降阶程序有5个断言,只列出内容:1)a^2 + b^2 = Mp; 应用恒等式,我们选取的u,v满足u=a(mid M), v= b(mod M)

-M/2<= u, v, <= M/2. 于是有,u^2 + v^2 = a^2 + b^2= 0 (mod M),u^2 + v^2能被M整除,设u^2 + v^2 = Mr.其余四个断言陈述:2)r>=1; 3)r < M; 4)ua + vb能被M整除,

5)va-ub能被M整除。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;

typedef __int64 lint;

lint pow_mod(lint r, lint x, lint p) {
    lint pm = 1;
    while (x) {
        if (x&1)
            pm = (pm*r)%p;
        r = r*r%p;
        x >>= 1;
    }
    return pm;
}

int main()
{
    lint p, a, b, r, x, s, M, u, v, k, y, z, pm;
    while (scanf("%I64d", &p) != EOF) {
        if ((p-1)%4)
            printf("Illegal\n");
        else {
            b = 1;
            srand(NULL);
            r = rand()%(p-2)+2;
            x = (p-1)>>2;
            pm = pow_mod(r, x, p);
            while ((pm*pm)%p != p - 1) {
                r = rand()%(p-1)+1;
                pm = pow_mod(r, x, p);
            }
            a = pm;
            s = a*a + b*b;
            while (s != p) {
                M = s/p;
                k = M>>1;
                u = (a%M + M)%M;
                v = (b%M + M)%M;
                if (u > k)
                    u = M - u;
                if (v > k)
                    v = M - v;
                if ((u*a + v*b)%M)
                    swap(a, b);
                y = (u*a + v*b)/M;
                z = (v*a - u*b)/M;
                s = y*y + z*z;
                a = y;
                b = z;
            }
            if (a < 0)
                a = -a;
            if (b < 0)
                b = -b;
            if (a > b)
                swap(a, b);
            printf("Legal %I64d %I64d\n", a, b);
        }
    }
    return 0;
}


相关文章推荐

【算法】将正整数表示为平方数之和

Timus Online Judge 网站上有这么一道题目:1073. Square Country。这道题目的输入是一个不大于 60,000 的正整数,要求计算出该正整数最少能够使用多少个正整数的...

ACM_最快的平方数之和

  • 2013年10月09日 13:33
  • 521B
  • 下载

求任意数以内所有可以表示为连续素数之和的素数。

/* * 求100以内所有可以表示为连续素数之和的素数。 * 素数i和j(i

素数判断方法,优化平方阶

网上有线性阶的素数算法,这里不讨论该算法,zhishizhen
  • chindax
  • chindax
  • 2014年10月18日 14:10
  • 283

hdu3826(素数的应用——判断某个数的因子是否含有整数的平方数)

先求出2----1000 000之间的素数,放在prime数组内,如果n是含有某个整数的平方数,那么n能连续两次除以prime[ i ],现在从小到大,依次除,如果除完2----1000000的素数后...

【程序44】 题目:一个偶数总能表示为两个素数之和。

程序44 题目:一个偶数总能表示为两个素数之和 (啰嗦两句   这道题目其实是很简单的,但是我的代码是比较长的 因为我完善了一下题目的要求,加入和题目相关的知识 ,毕竟题目不是单纯的完成就可以了,我...

从1到20个数字排成一圈,每两个相邻数字之和为一个素数

//从1到20个数字排成一圈,每两个相邻数字之和为一个素数 #include"stdio.h" #include"stdlib.h" int zhongshu=0;//统计总数 int shusu(i...

求两个数之间的素数+一个数的各位之和+判断回文数

#include #include #include using namespace std; int main() { int a,k,m=0,c=1,n=0; bool pr...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:哪些素数可以表示成两平方数之和? hdoj 3542 费马降阶
举报原因:
原因补充:

(最多只允许输入30个字)