哪些素数可以表示成两平方数之和? hdoj 3542 费马降阶

原创 2012年03月26日 18:10:50

摘自数论概论的内容:

素数的两平方数之和定理:设p是素数,则p是两平方数之和的充要条件是p= 1(mod 4) (或 p = 2).

两平方数之和定理实际上由两个陈述组成:

陈述1:如果p是两平方数之和,则p = 1(mod 4).

证明:设p = a^2 + b^2,p是奇数,所以a,b为一奇一偶,设a为奇数, b为偶数.比如 a= 2*n+1 b = 2*m.p = a^2 + b^2 = 4n^2+4n+1+4m^2 = 1 (mod 4).

陈述2:如果= 1(mod 4),则p是两平方数之和. 这个的证明很麻烦,主要依据费马降阶法,可以参考数论概论第26章。

简单的说,如果= 1(mod 4),不直接获得p是两平方数之和,而是将p的某个倍数表示成两个平方数之和。由二次互反律知x^2=-1(mod p)有一解,令x = a,b = 1,

a*a + b*b = Mp.利用费马降阶不断减小p的倍数使其可以表示两平方数之和,最终使p变成两平方数之和。如何利用已知的a, b, M来产生新的a, b, M.有恒等式:

(v^2+v^2)(a^2+b^2) = (ua+vb)^2 + (va-ub)^2.降阶程序有5个断言,只列出内容:1)a^2 + b^2 = Mp; 应用恒等式,我们选取的u,v满足u=a(mid M), v= b(mod M)

-M/2<= u, v, <= M/2. 于是有,u^2 + v^2 = a^2 + b^2= 0 (mod M),u^2 + v^2能被M整除,设u^2 + v^2 = Mr.其余四个断言陈述:2)r>=1; 3)r < M; 4)ua + vb能被M整除,

5)va-ub能被M整除。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;

typedef __int64 lint;

lint pow_mod(lint r, lint x, lint p) {
    lint pm = 1;
    while (x) {
        if (x&1)
            pm = (pm*r)%p;
        r = r*r%p;
        x >>= 1;
    }
    return pm;
}

int main()
{
    lint p, a, b, r, x, s, M, u, v, k, y, z, pm;
    while (scanf("%I64d", &p) != EOF) {
        if ((p-1)%4)
            printf("Illegal\n");
        else {
            b = 1;
            srand(NULL);
            r = rand()%(p-2)+2;
            x = (p-1)>>2;
            pm = pow_mod(r, x, p);
            while ((pm*pm)%p != p - 1) {
                r = rand()%(p-1)+1;
                pm = pow_mod(r, x, p);
            }
            a = pm;
            s = a*a + b*b;
            while (s != p) {
                M = s/p;
                k = M>>1;
                u = (a%M + M)%M;
                v = (b%M + M)%M;
                if (u > k)
                    u = M - u;
                if (v > k)
                    v = M - v;
                if ((u*a + v*b)%M)
                    swap(a, b);
                y = (u*a + v*b)/M;
                z = (v*a - u*b)/M;
                s = y*y + z*z;
                a = y;
                b = z;
            }
            if (a < 0)
                a = -a;
            if (b < 0)
                b = -b;
            if (a > b)
                swap(a, b);
            printf("Legal %I64d %I64d\n", a, b);
        }
    }
    return 0;
}


【数论学习】奇素数分解为两个数平方和

首先需要考虑哪些奇素数可能分解为两个数平方和。 引论:只有形如4k+1的奇素数可能被分解为两个数平方和。 证明:对于一个奇素数p能够被分解为两个数的平方和,这样a和b必定是一奇一偶,设a=2u、b=...
  • u013834197
  • u013834197
  • 2014年03月26日 18:42
  • 1311

生成一个n*n的方阵,然后输出此方阵对角线上元素之和

//输入一个正整数n(1 //公式为a[i][j]=i*n+j+1 (0= 源代码: #include #include #define N 10 //输入一个正整数n(1...
  • u012110719
  • u012110719
  • 2015年04月02日 10:01
  • 2026

【程序44】 题目:一个偶数总能表示为两个素数之和。

程序44 题目:一个偶数总能表示为两个素数之和 (啰嗦两句   这道题目其实是很简单的,但是我的代码是比较长的 因为我完善了一下题目的要求,加入和题目相关的知识 ,毕竟题目不是单纯的完成就可以了,我...
  • u012249177
  • u012249177
  • 2015年11月01日 19:01
  • 2493

【算法】将正整数表示为平方数之和

Timus Online Judge 网站上有这么一道题目:1073. Square Country。这道题目的输入是一个不大于 60,000 的正整数,要求计算出该正整数最少能够使用多少个正整数的...
  • LINEME163
  • LINEME163
  • 2013年10月30日 09:52
  • 609

ACM_最快的平方数之和

  • 2013年10月09日 13:33
  • 521B
  • 下载

编写一个程序,从键盘输入一个偶数,输出该偶数写成的两个素数之和

  • 2012年11月06日 07:04
  • 451B
  • 下载

求任意数以内所有可以表示为连续素数之和的素数。

/* * 求100以内所有可以表示为连续素数之和的素数。 * 素数i和j(i
  • CreazyApple
  • CreazyApple
  • 2012年09月09日 00:03
  • 1856

hdu3826(素数的应用——判断某个数的因子是否含有整数的平方数)

先求出2----1000 000之间的素数,放在prime数组内,如果n是含有某个整数的平方数,那么n能连续两次除以prime[ i ],现在从小到大,依次除,如果除完2----1000000的素数后...
  • u013509299
  • u013509299
  • 2014年02月15日 23:21
  • 626

素数判断方法,优化平方阶

网上有线性阶的素数算法,这里不讨论该算法,zhishizhen
  • chindax
  • chindax
  • 2014年10月18日 14:10
  • 313

1.2.2一个数可以有多少种用连续素数之和表示

#include using namespace std; const int maxp=2000,n=10000; int prime[maxp],total=0; bool isprime(in...
  • sxy201658506207
  • sxy201658506207
  • 2017年05月09日 12:02
  • 209
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:哪些素数可以表示成两平方数之和? hdoj 3542 费马降阶
举报原因:
原因补充:

(最多只允许输入30个字)