关闭

hdoj Integer’s Power

标签: integer
594人阅读 评论(0) 收藏 举报
分类:

来源:2009 Shanghai Invitation Contest Host by DHU

思路:sum[a, b] = sum[2, b] - sum[2,a-1].

枚举指数i,计算出在区间内可以表示成p^i的个数。值得注意的是若在区间[2, 64]内,i = 2时,a[2] = 7(2,3,4,5,6,7,8),其中4,8不应包含在内,因为4^2= 2^4,8^2=2^6,所以在最后计算i次方个数的时候需要把i次方的倍数个数剪掉。

#include<stdio.h>
#include<string.h>
#include<math.h>
#include <iostream>

using namespace std;

typedef __int64 lint;

lint ar[200],br[200], a[200];
const double eps = 1e-6;
lint n,m;

lint solve() {
    lint p, i, j, tmp, cnt;
    cnt = 0;
    memset(ar,0,sizeof(ar));
    memset(br,0,sizeof(br));
    memset(a,0,sizeof(a));
    tmp = m;
    while (tmp) {
        cnt++;
        tmp >>= 1;
    }
    if (n == m) {
        i = cnt;
        for (; i>0; i--) {
            if(i == 1)
                return 1;
            p = (lint)pow(n*1.0, 1.0/i+eps);
            tmp = 1;
            j = i;
            while(j--) {
                tmp *= p;
            }
            if (tmp == n)
                return i;
        }
    }
    else {
        i = cnt;
        for (; i > 0; --i) {
            if (i == 1) {
                ar[1] = m;
                br[1] = n -1;
            }
            else {
                p = (lint)pow(n*1.0, 1.0/i+eps);
                while (1) {
                    j = i;
                    tmp = 1;
                    while(j--) {
                        tmp *= p;
                    }
                    if (tmp < n) {
                        br[i] = p;
                        break;
                    }
                    else {
                        p--;
                    }
                }
                p = (lint)pow(m*1.0, 1.0/i+eps);
                j = i;
                while (1) {
                    tmp = 1;
                    j = i;
                    while (j--) {
                        tmp *= p;
                    }
                    if (tmp <= m) {
                        ar[i] = p;
                        break;
                    }
                    else p--;
                }
            }
        }
        for (i = cnt; i > 0; --i) {
            a[i] = ar[i] - br[i];
            for (j = i + i; j <= cnt; j += i)
                a[i] -= a[j];
        }
        lint sum = 0;
        for (i = 1; i <= cnt; ++i)
            sum += i*a[i];
        return sum;
    }
}

int main()
{
    while (scanf("%I64d%I64d",&n,&m)!=EOF) {
        if(n==0&&m==0)
            break;
        printf("%I64d\n", solve());
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:102294次
    • 积分:1858
    • 等级:
    • 排名:千里之外
    • 原创:83篇
    • 转载:6篇
    • 译文:0篇
    • 评论:13条