Formal sys-Pradicate semantic

介绍个定义

Interpretation
已知有 是一阶谓词逻辑(PL1)的Signatur
那么我们定义这个Signatur的interpretation 为(D,I),并且具有以下性质:
1.D是任意的非空的集合
2.I是Signatur符号的映射:
1).对任意常数c有:I(c) D
2).n>=1,对于有n个参数的函数符号f有:I(f): DnD
3).对于任意不含有参数的谓词符号 P有:I(P) {T,F}
4).n>=1,对于任意的含有n个参数的谓词符号p存在对应的一个n阶关系I(p) Dn
断言(Variablenbelegung) β
β :Var D.
已知有x Var d D,那么使x取d值的断言为:

βdx(y){dβ(y)falls y=xfalls yx

//已知x取d值,那么关于变量y的断言是:如果x=y,那么结果就是d,而如果x不等于y,那么关于y的断言还是未知,用 β(y) 表示

评价Formel(Auswertungsfunktion):

已知(D,I)是 的Interpretation, β 是关于D的断言。那么我们定义一个评价函数 ValD,I,β ,并且他满足以下属性:
valD,I,β(t)D tTerm
valD,I,β(A) {T,F} 当A For
valD,I,β(x)=β(x)xVar
valD,I,β(f(t1,...,tn))=(I(f))(valD,I,β(t1),...,valD,I,β(tn))
1.
valD,I,β(1)=T
valD,I,β(0)=F

valD,I,β(st):={TFvalD,I,β(s)=valD,I,β(t)

valD,I,β(P):=I(P) 其中P不包含参数的谓词符号
valD,I,β(p(t1,...,tn)):={TF(valD,I,β(t1),...,valD,I,β(tn))I(p)

//有点问号???
2. valD,I,β(X)X { ¬A,AB,AB,AB,AB }的情况和表达逻辑的相同
3.
valD,I,β(xA):={TFdDvalD,I,βdx(A)=T

4.
valD,I,β(xA):={TFdDvalD,I,βdx(A)=T

等价定理
已知有 是一个Interpretation, β,γ 是两个变量断言(Variablenbelegung),那么就有:
1.已知 β(x)=γ(x) 其中 xVar(t),tTerm ,可以推出: val,β(t)=val,γ(t)
2.已知针对Formel A有 β(x)=γ(x) 其中x Frei(A) ,那么可以推出 val,β(A)=val,β(A)
3.如果 AFor 是封闭的,那么就有 val,β(A)=val,γ(A)

算数结构(Arithmetic structure)

Signatur arith= {0,1,*,+,<}
在这里要认识两种结构,一种是普通的数学整数结构,在这里就跳了,另一种是Java的整数结构(就是有溢出的那种)他表示如下:
Jint=(,,+,<)
Jint:= [int_MIN,int_MAX]=[ 232,2321 ]
n+m:=int_MIN+(int_HALFRANGE+(n+m))%int_RANGE
n*m:=int_MIN+(int_HALFRANGE+(n*m))%int_RANGE
其中:int_HALFRANGE= 231 int_RANGE= 232

int_MAX+1=int_MIN
int_MIN+(-1)=int_MAX
比较 Jint

Formelxy(x<y)xy((x+1)y)=xy+y)x(0<xx+1<0)yesyesnonoyesyes

Term的替换原则(Substitutionslemma)

已知 是一个Signatur, 是对 的一个Interpretation, β,β 是两个断言, σ 是一个替换,那么就有:
val,β(σ(t))=val,β(t)
其中对于所有的变量x Var 有:
β(x)=val,β(σ(x))
//也就是说 β(x)=β(σ(x))
证明:略//呵呵呵呵呵呵呵呵呵呵呵????
//另外上述原则同时适用于不含冲突的替换证明同略???

Hoare 赋值规则

Hoare是一个三元式,分别为前置条件、操作、后置条件,其赋值规则表达如下:
{{x/s}A} x:=s {A}
可以这么理解,如果前置条件为真,那么进行赋值操作(就是替换了,把x替换为s),那么得到的相应的结果也为真。
由上述规则可以推出:
已知 是一个Signatur, 是针对 的一个Interpretation, β 是一个断言, σ 是一个无冲突的替换其中对于所有的不等于x的变量y满足 σ(y)=y 。那么就有:
val,β(xAσ(A))=W
val,β(σ(A)xA)=W
证明看不懂

Model

以下有关仅用于不含有自由变量的Formel。
我们说针对一个 的Interpretation是一个关于不含有自由变量的Formel A的Model,当 val(A)=T .
对Formel集合的Model的定义与此类似:要求集合中的每一个Formel B都满足 val=T .

推出

已知有: MFor,AFor 并且两者都不含有自由变量,那么有:
MA: M中的每一个Model,同时也是A的Model :M { ¬A }没有Model
我们就说由M可以推出M或者A跟随M(Aus M folgt A)
一些简化表达:
代替
A 代替 A
BA 代替{B} A

普遍成立

AFor 是:
普遍成立的(allgemeingültig)当且仅当 A
可实现的(erfüllbar)当且仅当 ¬A 不是普遍成立的
1.下面的说法是等价的:
1).A 是普遍成立的
2).A的每一个Interpretation都是Model
3).对于所有的 val(A)=T
2.下面说法也是等价的:
1).A是可实现的
2).存在 满足 val(A)=W
一些普遍成立的Formel
$$
1.\lnot \forall xA \leftrightarrow \exists x \lnot A \
2.\lnot \exists xA \leftrightarrow \forall x \lnot A \
3.\forall x \forall y A \leftrightarrow \forall y \forall x A \
4.\exists x \exists y A \leftrightarrow \exists y \exists x A \
5.\forall x(A \land B) \leftrightarrow \forall A \land \forall B \
6.\exists x(A \lor B) \leftrightarrow \exists x A \lor \exists x B \

$$

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值